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• Established in 2023

• Mission

push the boundaries to uncover the maximum potential of intelligence

• Research directions

deep learning, reinforcement learning, LLMs, multimodality, ML systems, AI safety

Bytedance Seed

Doubao: personal assistant Dreamina: image generator Trae: code editor



Training systems at Scale

Megascale

[Stability] Scaling Large Language Model Training to >10,000 GPUs
01.>

ByteScale

[Data heterogeneity] LLM Training with a 2M Context Length
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>



MegaScale: a production LLM training system

* The Llama 3 Herd of Models, 2024

• Efficiency

• nD parallelism (data/tensor/pipeline/expert parallelism) & large batch sizes

• fused kernels, tile-level computation & communication overlap kernels (flux / comet) 

• Stability

• Frequent machine failures

• Efficient checkpoint & restart

• Root-cause detection



MegaScale: robust training workflow 

* MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs



MegaScale: complicated failures

• Gray failures & stragglers

Slow GPU, python garbage collection, etc

• Silent data corruptions: long diagnosis cycle

• Manufactured with latent silicon defects

• Sensitive to temperature, voltage, workload

• Incorrect memory/arithmetic/logic operations without hardware interrupts  

• Phenomenon: sudden increase of loss

• Reproducible vs. transient

• Bugs in new optimizations

New fused kernels & parallelism implementations that cannot 

bitwise align

Symbolic verification?
Nd parallel distributed profiler



Training systems at Scale

Megascale

Large scale LLM training requires robustness and in-depth observability
01.>

ByteScale

[Data heterogeneity] LLM Training with a 2M Context Length
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>

Applications:
• documents / video understanding 
• agent interaction (desktop operator / game agents)
• code generation 



Observation: data heterogeneity

• ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
• DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

sequence lengths exhibit skewed distribution

• Samples: 80% <= 4K, 0.05% >=2M 

• Tokens: 0.05% samples (>=2M) contribute 12.1%

• Other modalities: video / image / audio

• Challenge: imbalanced & dynamic workload

• Attention: quadratic computation cost, linear memory cost

• MLP: linear computation/memory cost

mixing long and short sequences enhances model performance

• Llama3-128K: mixing 0.1% of long data

• DeepSeek-R1: gradually increasing lengths during RL



Problems with context parallelism & sequence packing

• Sequence Parallelism: Long Sequence Training from System Perspective, 2021

• Context parallelism: split one sequence into blocks across GPUs, compute attention by blocks, with scaling.

Communicate key & value in a ring

● sequence packing: pack sequences up to the context length



Problems with context parallelism & sequence packing

• ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs

Problems of existing systems

• Static data parallel & context parallel mesh: redundant communication

• Imbalanced flops: increased data & pipeline parallelism bubbles

● Increased PP bubble and DP bubble with nD parallelism



ByteScale for large scale long context training

Parallelism strategy: 

hybrid data/context parallelism for inter-data 

and intra-data partitioning

Profiler: 

profile data & model, build cost models

Communication optimizer: 

optimize the communication with data-aware 

sharding, communication, and offloading

Balance scheduler: 

parallelism-aware data assignment



ByteScale: hybrid data parallelism

Hybrid Data Parallelism (HDP): 

• Unifies both inter-data and intra-data partitioning. Distribute tokens evenly. 

• Allows heterogeneous behavior among ranks

● NCCL buffer optimization: 
● Dynamic process group creation -> overhead, too many process groups -> OOM
● Build a global comm group across all HDP ranks for P2P comm between any two devices

● Selective activation offloading 
● Attention computation complexity O(N^2), H2D/D2H complexity O(N)



ByteScale: balance scheduler 

Redefine micro-batch: enables different HDP ranks to process different numbers of micro-batches 



ByteScale: end-to-end evaluation

• >10k GPUs in total, 3.2Tb/s RDMA networking per node 

• Baseline: megascale with static parallelism

HDP naïve: without balance scheduler

HDP balanced

• Dataset: context length 128k – 2M, two distributions (Github & Byted)



Training systems at Scale

Megascale

Large scale LLM training requires robustness and in-depth observability
01.>

ByteScale

Data heterogeneity in data mixture requires dynamic parallelism and careful balance
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>

Improve reasoning by leveraging test-time computationAlign the LLM with human values 



g

Supervised fine-tuning

• Learning from labeled examples

Reinforcement learning

• Optimization based on rewards

• Preference alignment

• Human feedbacks

• Reasoning with automated feedbacks

• Coding: unit-tests

• Math: ground truth graders

• Agentic tasks: operator, deep research

RL vs SFT



Infra challenges for LLM RL

the need for nD parallelisms (e.g. Megatron-LM)

• Growing model size: llama 70b, Deepseek 671B

• Growing sequence length: 8k -> 1M

the need for programming abstractions: multiple stages, multiple models, multiple processes

weight 
synchronization



Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:



Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Auto-regressive 
Generation



Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Experience Preparation through a 
single pass of forward computation



Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Megatron-LM

Model updating via forward 
and backward computation

weight update & sync



Heterogeneous workload in LLM RL 

Generation

Inference

Training

DeviceMesh 1 DeviceMesh 2

• Different memory footprint, computation/memory IO across stages -> different parallelism

• Data transfer between different models with different partitions (DeviceMesh)

• Device placement based on data dependency



LLM training computation flow

- https://cs231n.stanford.edu/slides/2024/lecture_4.pdf
- https://arxiv.org/pdf/1909.08053
- [1] Paul Barham et al. 2022. Pathways: Asynchronous distributed dataflow for ml. MLSys 2022

LLM training is just distributed neural network

• Computation graph: numerical and communication ops

SPMD for high performance

• Each process runs the same program with different data

RL algorithm control flow

RL data flow is a DAG

RL data flow is single process

Expresses algorithm and model placement

https://cs231n.stanford.edu/slides/2024/lecture_4.pdf
https://arxiv.org/pdf/1909.08053


LLM RL programming abstraction design

Existing works

• integrate control flow with computation flow

• no central control process, each worker executes the same program

• Multi-process control flow has to be aware of distributed information

Manually inject code for different inter-role 
dependencies and different placements 



HybridFlow: efficient & flexible LLM RL framework

Design choice

• Use Single-Controller to implement RL dataflows (algorithms) in a single process

• Use Multi-Controller to implement computation dataflow (LLM workload primitives)



HybridFlow: intra-node(role) level APIs 

Mapping models to different ResourcePool and get the 
execution order based on the data dependencies

• Initialize model using nD parallelism based on the user config
• Encapsulate distributed computation into reusable functions,
later called by the single controller to represent the RL dataflow 
(via ray or TorchRPC)



Transfer Protocols:
• Unify data resharding between models 

with distinct parallelism strategies and 
different placements.

• Each protocol includes a collect and a 
dispatch function

• 3D Parallelism: 3D_PROTO ; 
• ZeRO Parallelism: DP_PROTO ; 
• Context Parallel: CP_PROTO and others

Collect function to
aggregate output data

Distribute function to
split the input data

Synchronous Execution: Single-Controller transfer all data between models

HybridFlow: intra-node(role) level APIs 



Asynchronous intra-node execution

Only collect data futures Only distribute data futures

Single-Controller only transfer futures between roles/nodes

Actual Data transfer will be conducted directly between workers



HybridFlow: flexible algorithm programming

With the Hybrid-Controller design and Hierarchical APIs, 
we can implement the PPO algorithms in 8 Lines of Code

To implement GRPO, users only need to delete the usage of Critic 
model and adjust advantage function in the actor model.



Evaluation
Testbed: 16 x DGX-A100, each with 8 x NVIDIA A100-80GB. 1.6 Tb/s RDMA

Models: LLaMa architecture model with sizes: 7B, 13B, 32B and 70B

Baseline: DeepSpeed-Chat, OpenRLHF v0.2.5, NeMo-Aligner v0.2

Workload: Full-HH-RLHF dataset & PPO algorithm



verl: open source version of HybridFlow

History & community

• Developed & adopted internally since 2023/9 for research, open sourced on 2024/10

Reinforcement learning at Bytedance

• Reasoning: O1-level performance on math benchmarks

• RLHF, Image generation, music generation

• Desktop operator, coding assistant…

Users and contributors:

• PKU, THU, UIUC, UCB, UCLA, HKU, Stanford, Northwestern, MIT 

• Amazon, NVIDIA, LMSys, Alibaba, StepFun, Anyscale, OpenHands,  



verl: open source version of HybridFlow

Features

RL recipes: PPO, GRPO, RLOO, reinforce++, DAPO

Transformers integration: deepseek, llama, qwen, gemma, etc

Inference engine: vllm, sglang

Distributed training engine: FSDP, Megatron

System optimizations: seq packing, seq parallelism, fused entropy kernels

Hardware support: NVIDIA GPU, AMD GPU, etc

Hybrid controller programming



verl: flexible, efficient, battle-tested

• DAPO algorithm: improvements on top of GRPO

• beats DeepSeek-R1-zero-32B with fewer steps

• Fully open source recipe (dataset, code, logs, model)

DAPO: an Open-Source LLM Reinforcement Learning System at Scale



verl: roadmap

• deepseek-v3 optimizations

• multi-turn optimizations

• environment & tool calling

• stable sglang integration

• stable hardware support: AMD & NPU

• Interesting directions:

• reasoning model inference (tool calls)

• long tail inference in synchronous RL 

• async RL algorithms for LLMs

• efficient RL (fp8, LoRA) Let’s build together!



Haibin Lin, Bytedance Seed – MLSys

haibin.lin@bytedance.com

Q&A

Bytedance
Seed
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