

Building LLM Training Systems at Scale

Haibin Lin, Bytedance Seed - MLSys

Bytedance Seed 🕑

- Established in 2023
- Mission

push the boundaries to un

• Research directions

deep learning, reinforceme

Doubao: personal assistant

			0					
		Benchmark	Doubao-1.5-pro	GPT40-1120	Claude3.5-Sonnet	Gemini-2-flash	Qwen2-VL-72B	InternVL-2.5-78B
ſ	College-level Problems	MMMU(val)	73.8	70.7	70.4	70.7	64.5	70.1
		MMMU-Pro	59.3	54.5	54.7	57.0	46.2	48.6
	Mathematical Reasoning	MathVision	48.6	30.4	38.3	41.3	25.9	32.2
		OlympiadBench	48.5	25.9	27.8	43.6	11.2	25.1
		MathVista	78.8	63.8	65.4	73.1	70.5	76.6
	Document and Diagrams Reading	TextVQA(val)	84.7	81.4	76.5	75.6	85.5	83.4
		ChartQA(test avg.)	88.O	86.7	90.8	85.2	88.3	88.3
		InfoVQA(test)	88.0	80.7	74.3	77.8	84.5	84.1
		DocVQA(test)	96.7	91.1	95.2	92.1	96.5	95.1
		Charxiv(RQ/DQ)	54.4 / 84.3	52.0 / 86.5	60.2 / 84.3	55.2/81.8	43.0 / 81.3	42.4 / 82.3
e	General Visual Question Answering	RealWorldQA	78.9	75.4	66.6	74.5	77.8	78.7
		MMStar	71.9	63.9	65.1	69.4	68.6	73.1
		MMBench-en	87.5	83.5	81.7	83.0	85.9	88.3
		MMBench-cn	86.0	82.1	83.4	82.9	83.4	88.5
	Spatial and Counting Understanding	Blink	68.4	68.0	59.6	62.6	61.1	63.8
		CountBench	89.6	85.1	86.8	88.2	88.6	84.1
	Video Understanding	Video-MME	74.1	73.4	61.7	78.2	71.2	72.1
		EgoSchema- subest	75.4	74.8	64.4	71.8	80.6	78.2

Training systems at Scale

> 01.
 Megascale
 • [Stability] Scaling Large Language Model Training to >10,000 GPUs

> 02. ByteScale
 • [Data heterogeneity] LLM Training with a 2M Context Length

> 03. HybridFlow (verl)
 • [Programming Model] Reinforcement Learning System for LLMs

MegaScale: a production LLM training system ()

• Efficiency

- nD parallelism (data/tensor/pipeline/expert parallelism) & large batch sizes
- fused kernels, tile-level computation & communication overlap kernels (flux / comet)

• Stability

- Frequent machine failures
- Efficient checkpoint & restart
- Root-cause detection

* The Llama 3 Herd of Models, 2024

Component	Category	Interruption Count	% of Interruptions
Faulty GPU	GPU	148	30.1%
GPU HBM3 Memory	GPU	72	17.2%
Software Bug	Dependency	54	12.9%
Network Switch/Cable	Network	35	8.4%
Host Maintenance	Unplanned Maintenance	32	7.6%
GPU SRAM Memory	GPU	19	4.5%
GPU System Processor	GPU	17	4.1%
NIC	Host	7	1.7%
NCCL Watchdog Timeouts	Unknown	7	1.7%
Silent Data Corruption	GPU	6	1.4%
GPU Thermal Interface $+$ Sensor	GPU	6	1.4%
SSD	Host	3	0.7%
Power Supply	Host	3	0.7%
Server Chassis	Host	2	0.5%
IO Expansion Board	Host	2	0.5%

MegaScale: robust training workflow (\checkmark)

* MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs

MegaScale: complicated failures ()

• Gray failures & stragglers

Slow GPU, python garbage collection, etc

- Silent data corruptions: long diagnosis cycle
 - Manufactured with latent silicon defects
 - Sensitive to temperature, voltage, workload
 - Incorrect memory/arithmetic/logic operations without hardware interrupts
 - Phenomenon: sudden increase of loss
 - Reproducible vs. transient
- Bugs in new optimizations

New fused kernels & parallelism implementations that cannot bitwise align

Symbolic verification?

Nd parallel distributed profiler

Training systems at Scale

> 01. Megascale

• Large scale LLM training requires robustness and in-depth observability

> 02.

ByteScale

• [Data heterogeneity] LLM Training with a 2M Context Length

Applications:

- documents / video understanding
- agent interaction (desktop operator / game agents)
- code generation •

> 03. HybridFlow (verl) • [Program.]

Programming Model] Reinforcement Learning System for LLMs

Observation: data heterogeneity

sequence lengths exhibit skewed distribution

- Samples: 80% <= 4K, 0.05% >=2M
- Tokens: 0.05% samples (>=2M) contribute 12.1%
- Other modalities: video / image / audio

mixing long and short sequences enhances model performance

- Llama3-128K: mixing 0.1% of long data
- DeepSeek-R1: gradually increasing lengths during RL
- Challenge: imbalanced & dynamic workload
- Attention: quadratic computation cost, linear memory cost
- MLP: linear computation/memory cost
- ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
- DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Problems with context parallelism & sequence packing

Context parallelism: split one sequence into blocks across GPUs, compute attention by blocks, with scaling.
 Communicate key & value in a ring

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

 $softmax([A_1, A_2]) = [\alpha \times softmax(A_1), \beta \times softmax(A_2)]$

• sequence packing: pack sequences up to the context length

• Sequence Parallelism: Long Sequence Training from System Perspective, 2021

Problems with context parallelism & sequence packing

• Increased PP bubble and DP bubble with nD parallelism

Problems of existing systems

- Static data parallel & context parallel mesh: redundant communication
- Imbalanced flops: increased data & pipeline parallelism bubbles

• ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs

ByteScale for large scale long context training 🕑

Parallelism strategy:

hybrid data/context parallelism for inter-data

and intra-data partitioning

Profiler:

profile data & model, build cost models

Communication optimizer:

optimize the communication with data-aware sharding, communication, and offloading **Balance scheduler**:

parallelism-aware data assignment

Figure 7. ByteScale Overview

ByteScale: hybrid data parallelism 🕑

Hybrid Data Parallelism (HDP):

- Unifies both inter-data and intra-data partitioning. Distribute tokens evenly.
- Allows heterogeneous behavior among ranks

Figure 8. Illustration of HDP

- NCCL buffer optimization:
 - Dynamic process group creation -> overhead, too many process groups -> OOM
 - Build a global comm group across all HDP ranks for P2P comm between any two devices
- Selective activation offloading
 - Attention computation complexity O(N^2), H2D/D2H complexity O(N)

ByteScale: balance scheduler

Redefine micro-batch: enables different HDP ranks to process different numbers of micro-batches

Figure 19. Network Traffic and Tensor Core Utilization

ByteScale: end-to-end evaluation ()

- >10k GPUs in total, 3.2Tb/s RDMA networking per node
- Baseline: megascale with static parallelism
 HDP naïve: without balance scheduler
 HDP balanced
- Dataset: context length 128k 2M, two distributions (Github & Byted)

Training systems at Scale

- Megascale
- Large scale LLM training requires robustness and in-depth observability

ByteScale

• Data heterogeneity in data mixture requires dynamic parallelism and careful balance

HybridFlow (verl)

• [Programming Model] Reinforcement Learning System for LLMs

How to cheat on exam?

🛞 Claude-3.7-Sonnet Poe

> 01.

> 02.

> 03.

I can't provide advice on how to cheat on exams as it violates academic integrity policies and could lead to serious consequences including course failure or expulsion. I'd be glad to suggest effective studying strategies instead.

Align the LLM with human values

Improve reasoning by leveraging test-time computation

RL vs SFT 😢

Supervised fine-tuning

- Learning from labeled examples Reinforcement learning
- Optimization based on rewards
- Preference alignment
 - Human feedbacks
- Reasoning with automated feedbacks
 Coding: unit-tests
 π Math: ground truth graders
- Agentic tasks: operator, deep research

Step 2

Collect comparison data, and train a reward model.

A prompt and \bigcirc several model Explain the moon outputs are landing to a 6 year old sampled. В Explain gravity. Explain war. C D Moon is natural People went to satellite of ... the moor A labeler ranks the outputs from best to worst. D > C > A = BThis data is used to train our reward model. D > C > A = B

Step 3

Optimize a policy against the reward model using reinforcement learning.

Infra challenges for LLM RL ()

the need for nD parallelisms (e.g. Megatron-LM)

- Growing model size: Ilama 70b, Deepseek 671B
- Growing sequence length: 8k -> 1M

the need for **programming abstractions**: multiple stages, multiple models, multiple processes

Heterogeneous workload in LLM RL (<

- Different memory footprint, computation/memory IO across stages -> different parallelism
- Data transfer between different models with different partitions (DeviceMesh)
- Device placement based on data dependency

LLM training computation flow ()

LLM training is just distributed neural network

- Computation graph: numerical and communication ops
 SPMD for high performance
- Each process runs the same program with different data

RL algorithm control flow (\checkmark)

RL data flow is a DAG

RL data flow is single process

Expresses algorithm and model placement

- https://cs231n.stanford.edu/slides/2024/lecture_4.pdf
- <u>https://arxiv.org/pdf/1909.08053</u>
- [1] Paul Barham et al. 2022. Pathways: Asynchronous distributed dataflow for ml. MLSys 2022

LLM RL programming abstraction design

Existing works

- integrate control flow with computation flow
- **no central control process,** each worker executes the same program
- Multi-process control flow has to be aware of distributed information

HybridFlow: efficient & flexible LLM RL framework

Design choice

- Use Single-Controller to implement RL dataflows (algorithms) in a single process
- Use Multi-Controller to implement computation dataflow (LLM workload primitives)

Flexible:

 Decouple computation and data dependencies
 Seamless integration of any LLM systems.

Efficient:

Zero redundancy during transition
Support any model placement strategies

HybridFlow: intra-node(role) level APIs

Synchronous Execution: Single-Controller transfer all data between models

Asynchronous intra-node execution

Single-Controller only transfer futures between roles/nodes

(ビ)

Actual Data transfer will be conducted directly between workers

HybridFlow: flexible algorithm programming

Examples of PPO and GRPO
for (prompts, pretrain_batch) in dataloader:
 # Stage 1: Generate responses
 batch = actor.generate_sequences(prompts)
 # Stage 2: Prepare experience
 batch = critic.compute_values(batch)
 batch = reference.compute_log_prob(batch)
 batch = reward.compute_reward(batch)
 batch = compute_advantages(batch, algo_type)
 # Stage 3: Actor and critic training
 critic_metrics = critic.update_critic(batch, loss_func=algo_type)
 actor_metrics = actor.update_actor(batch, loss_func=algo_type)

With the Hybrid-Controller design and Hierarchical APIs, we can implement the PPO algorithms in 8 Lines of Code

To implement GRPO, users only need to delete the usage of Critic model and adjust advantage function in the actor model.

Evaluation ()

Testbed: 16 x DGX-A100, each with 8 x NVIDIA A100-80GB. 1.6 Tb/s RDMA

Models: LLaMa architecture model with sizes: 7B, 13B, 32B and 70B

Baseline: DeepSpeed-Chat, OpenRLHF v0.2.5, NeMo-Aligner v0.2

Workload: Full-HH-RLHF dataset & PPO algorithm

verl: open source version of HybridFlow

History & community

Developed & adopted internally since 2023/9 for research, open sourced on 2024/10

Reinforcement learning at Bytedance

- Reasoning: O1-level performance on math benchmarks
- RLHF, Image generation, music generation
- Desktop operator, coding assistant...

Users and contributors:

- PKU, THU, UIUC, UCB, UCLA, HKU, Stanford, Northwestern, MIT
- Amazon, NVIDIA, LMSys, Alibaba, StepFun, Anyscale, OpenHands,

verl: open source version of HybridFlow

Features

- RL recipes: PPO, GRPO, RLOO, reinforce++, DAPO
- Transformers integration: deepseek, llama, qwen, gemma, etc
- Inference engine: vllm, sglang
- Distributed training engine: FSDP, Megatron
- System optimizations: seq packing, seq parallelism, fused entropy kernels
- Hardware support: NVIDIA GPU, AMD GPU, etc
- Hybrid controller programming

verl: flexible, efficient, battle-tested

Ľ)

- **DAPO algorithm**: improvements on top of GRPO
- beats DeepSeek-R1-zero-32B with fewer steps
- Fully open source recipe (dataset, code, logs, model)

DAPO: an Open-Source LLM Reinforcement Learning System at Scale

verl: roadmap

- deepseek-v3 optimizations
- multi-turn optimizations
- environment & tool calling
- stable sglang integration
- stable hardware support: AMD & NPU
- Interesting directions:
 - reasoning model inference (tool calls)
 - long tail inference in synchronous RL
 - async RL algorithms for LLMs
 - efficient RL (fp8, LoRA)

Awesome work using verl

Ľ

- <u>TinyZero</u>: a reproduction of **DeepSeek R1 Zero** recipe for reasoning tasks
- **<u>RAGEN</u>**: a general-purpose reasoning **agent** training framework
- deepscaler: iterative context scaling with GRPO
- Easy-R1: Multi-modal RL training framework
- self-rewarding-reasoning-LLM: self-rewarding and correction with generative rewarding
- Search-R1: RL with reasoning and searching (tool-call) interleaved LLMs
- <u>Code-R1</u>: Reproducing R1 for **Code** with Reliable Rewards
- ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
- DeepRetrieval: Hacking Real Search Engines and retrievers with LLMs via RL for int
- MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse

Let's build together!

Q&A

Haibin Lin, Bytedance Seed – MLSys haibin.lin@bytedance.com