
Haibin Lin, Bytedance Seed - MLSys

Building LLM Training
Systems at Scale

Bytedance
Seed

• Established in 2023

• Mission

push the boundaries to uncover the maximum potential of intelligence

• Research directions

deep learning, reinforcement learning, LLMs, multimodality, ML systems, AI safety

Bytedance Seed

Doubao: personal assistant Dreamina: image generator Trae: code editor

Training systems at Scale

Megascale

[Stability] Scaling Large Language Model Training to >10,000 GPUs
01.>

ByteScale

[Data heterogeneity] LLM Training with a 2M Context Length
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>

MegaScale: a production LLM training system

* The Llama 3 Herd of Models, 2024

• Efficiency

• nD parallelism (data/tensor/pipeline/expert parallelism) & large batch sizes

• fused kernels, tile-level computation & communication overlap kernels (flux / comet)

• Stability

• Frequent machine failures

• Efficient checkpoint & restart

• Root-cause detection

MegaScale: robust training workflow

* MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs

MegaScale: complicated failures

• Gray failures & stragglers

Slow GPU, python garbage collection, etc

• Silent data corruptions: long diagnosis cycle

• Manufactured with latent silicon defects

• Sensitive to temperature, voltage, workload

• Incorrect memory/arithmetic/logic operations without hardware interrupts

• Phenomenon: sudden increase of loss

• Reproducible vs. transient

• Bugs in new optimizations

New fused kernels & parallelism implementations that cannot

bitwise align

Symbolic verification?
Nd parallel distributed profiler

Training systems at Scale

Megascale

Large scale LLM training requires robustness and in-depth observability
01.>

ByteScale

[Data heterogeneity] LLM Training with a 2M Context Length
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>

Applications:
• documents / video understanding
• agent interaction (desktop operator / game agents)
• code generation

Observation: data heterogeneity

• ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
• DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

sequence lengths exhibit skewed distribution

• Samples: 80% <= 4K, 0.05% >=2M

• Tokens: 0.05% samples (>=2M) contribute 12.1%

• Other modalities: video / image / audio

• Challenge: imbalanced & dynamic workload

• Attention: quadratic computation cost, linear memory cost

• MLP: linear computation/memory cost

mixing long and short sequences enhances model performance

• Llama3-128K: mixing 0.1% of long data

• DeepSeek-R1: gradually increasing lengths during RL

Problems with context parallelism & sequence packing

• Sequence Parallelism: Long Sequence Training from System Perspective, 2021

• Context parallelism: split one sequence into blocks across GPUs, compute attention by blocks, with scaling.

Communicate key & value in a ring

● sequence packing: pack sequences up to the context length

Problems with context parallelism & sequence packing

• ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs

Problems of existing systems

• Static data parallel & context parallel mesh: redundant communication

• Imbalanced flops: increased data & pipeline parallelism bubbles

● Increased PP bubble and DP bubble with nD parallelism

ByteScale for large scale long context training

Parallelism strategy:

hybrid data/context parallelism for inter-data

and intra-data partitioning

Profiler:

profile data & model, build cost models

Communication optimizer:

optimize the communication with data-aware

sharding, communication, and offloading

Balance scheduler:

parallelism-aware data assignment

ByteScale: hybrid data parallelism

Hybrid Data Parallelism (HDP):

• Unifies both inter-data and intra-data partitioning. Distribute tokens evenly.

• Allows heterogeneous behavior among ranks

● NCCL buffer optimization:
● Dynamic process group creation -> overhead, too many process groups -> OOM
● Build a global comm group across all HDP ranks for P2P comm between any two devices

● Selective activation offloading
● Attention computation complexity O(N^2), H2D/D2H complexity O(N)

ByteScale: balance scheduler

Redefine micro-batch: enables different HDP ranks to process different numbers of micro-batches

ByteScale: end-to-end evaluation

• >10k GPUs in total, 3.2Tb/s RDMA networking per node

• Baseline: megascale with static parallelism

HDP naïve: without balance scheduler

HDP balanced

• Dataset: context length 128k – 2M, two distributions (Github & Byted)

Training systems at Scale

Megascale

Large scale LLM training requires robustness and in-depth observability
01.>

ByteScale

Data heterogeneity in data mixture requires dynamic parallelism and careful balance
02.>

HybridFlow (verl)

[Programming Model] Reinforcement Learning System for LLMs
03.>

Improve reasoning by leveraging test-time computationAlign the LLM with human values

g

Supervised fine-tuning

• Learning from labeled examples

Reinforcement learning

• Optimization based on rewards

• Preference alignment

• Human feedbacks

• Reasoning with automated feedbacks

• Coding: unit-tests

• Math: ground truth graders

• Agentic tasks: operator, deep research

RL vs SFT

Infra challenges for LLM RL

the need for nD parallelisms (e.g. Megatron-LM)

• Growing model size: llama 70b, Deepseek 671B

• Growing sequence length: 8k -> 1M

the need for programming abstractions: multiple stages, multiple models, multiple processes

weight
synchronization

Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Auto-regressive
Generation

Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Experience Preparation through a
single pass of forward computation

Reinforcement learning as data flow

Generation stage

Experience Preparation stage

Training stage

RL for LLM typically can be decomposed into 3 stages.
Taking the Proximal Policy Optimization (PPO) algorithm as an example:

Megatron-LM

Model updating via forward
and backward computation

weight update & sync

Heterogeneous workload in LLM RL

Generation

Inference

Training

DeviceMesh 1 DeviceMesh 2

• Different memory footprint, computation/memory IO across stages -> different parallelism

• Data transfer between different models with different partitions (DeviceMesh)

• Device placement based on data dependency

LLM training computation flow

- https://cs231n.stanford.edu/slides/2024/lecture_4.pdf
- https://arxiv.org/pdf/1909.08053
- [1] Paul Barham et al. 2022. Pathways: Asynchronous distributed dataflow for ml. MLSys 2022

LLM training is just distributed neural network

• Computation graph: numerical and communication ops

SPMD for high performance

• Each process runs the same program with different data

RL algorithm control flow

RL data flow is a DAG

RL data flow is single process

Expresses algorithm and model placement

https://cs231n.stanford.edu/slides/2024/lecture_4.pdf
https://arxiv.org/pdf/1909.08053

LLM RL programming abstraction design

Existing works

• integrate control flow with computation flow

• no central control process, each worker executes the same program

• Multi-process control flow has to be aware of distributed information

Manually inject code for different inter-role
dependencies and different placements

HybridFlow: efficient & flexible LLM RL framework

Design choice

• Use Single-Controller to implement RL dataflows (algorithms) in a single process

• Use Multi-Controller to implement computation dataflow (LLM workload primitives)

HybridFlow: intra-node(role) level APIs

Mapping models to different ResourcePool and get the
execution order based on the data dependencies

• Initialize model using nD parallelism based on the user config
• Encapsulate distributed computation into reusable functions,
later called by the single controller to represent the RL dataflow
(via ray or TorchRPC)

Transfer Protocols:
• Unify data resharding between models

with distinct parallelism strategies and
different placements.

• Each protocol includes a collect and a
dispatch function

• 3D Parallelism: 3D_PROTO ;
• ZeRO Parallelism: DP_PROTO ;
• Context Parallel: CP_PROTO and others

Collect function to
aggregate output data

Distribute function to
split the input data

Synchronous Execution: Single-Controller transfer all data between models

HybridFlow: intra-node(role) level APIs

Asynchronous intra-node execution

Only collect data futures Only distribute data futures

Single-Controller only transfer futures between roles/nodes

Actual Data transfer will be conducted directly between workers

HybridFlow: flexible algorithm programming

With the Hybrid-Controller design and Hierarchical APIs,
we can implement the PPO algorithms in 8 Lines of Code

To implement GRPO, users only need to delete the usage of Critic
model and adjust advantage function in the actor model.

Evaluation
Testbed: 16 x DGX-A100, each with 8 x NVIDIA A100-80GB. 1.6 Tb/s RDMA

Models: LLaMa architecture model with sizes: 7B, 13B, 32B and 70B

Baseline: DeepSpeed-Chat, OpenRLHF v0.2.5, NeMo-Aligner v0.2

Workload: Full-HH-RLHF dataset & PPO algorithm

verl: open source version of HybridFlow

History & community

• Developed & adopted internally since 2023/9 for research, open sourced on 2024/10

Reinforcement learning at Bytedance

• Reasoning: O1-level performance on math benchmarks

• RLHF, Image generation, music generation

• Desktop operator, coding assistant…

Users and contributors:

• PKU, THU, UIUC, UCB, UCLA, HKU, Stanford, Northwestern, MIT

• Amazon, NVIDIA, LMSys, Alibaba, StepFun, Anyscale, OpenHands,

verl: open source version of HybridFlow

Features

RL recipes: PPO, GRPO, RLOO, reinforce++, DAPO

Transformers integration: deepseek, llama, qwen, gemma, etc

Inference engine: vllm, sglang

Distributed training engine: FSDP, Megatron

System optimizations: seq packing, seq parallelism, fused entropy kernels

Hardware support: NVIDIA GPU, AMD GPU, etc

Hybrid controller programming

verl: flexible, efficient, battle-tested

• DAPO algorithm: improvements on top of GRPO

• beats DeepSeek-R1-zero-32B with fewer steps

• Fully open source recipe (dataset, code, logs, model)

DAPO: an Open-Source LLM Reinforcement Learning System at Scale

verl: roadmap

• deepseek-v3 optimizations

• multi-turn optimizations

• environment & tool calling

• stable sglang integration

• stable hardware support: AMD & NPU

• Interesting directions:

• reasoning model inference (tool calls)

• long tail inference in synchronous RL

• async RL algorithms for LLMs

• efficient RL (fp8, LoRA) Let’s build together!

Haibin Lin, Bytedance Seed – MLSys

haibin.lin@bytedance.com

Q&A

Bytedance
Seed

	Slide 1: Building LLM Training Systems at Scale
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Q&A

