
Efficient and Customizable Kernel
Generation for LLM Inference Serving

Zihao Ye

Apr 9th, 2025
Guest Lecture at @ CMU Machine Learning Systems

University of Washington & NVIDIA

1

2

Attentions in LLM Inference Serving: Challenges

● KV-Cache storage heterogeneity
○ Page-Table (vLLM)
○ RadixTree (sglang)
○ Pruning (H2O, …)
○ Speculative Decoding (Tree Attention)

● Attention Variants
○ Different data-types, head dimensions, …
○ Different query/key/value prologue, epilogue
○ Binary size explosion

● Prefix-reusing
○ Prefix caching

● Different phases
○ Prefill/decode/chunked-prefill/speculative decoding

● Runtime dynamism
○ Variable sequence length during generation

3

Attentions in LLM Serving - KVCache Heterogenity

Page Attention (vLLM): efficient memory management for variable sequence length.

KV-Cache are stored in Paged KV-Cache

4

Attentions in LLM Serving - KVCache Management

Radix Attention (sglang)

● Designed for prefix-caching and reuse.
● Page_size = 1 for less fragmentation and higher cache hit-rate.
● Duplicate prefix are organized as a Radix Tree.

5

Attentions in LLM Serving - KVCache Management

KV-Cache Compression
(e.g. Quest):

Stage 1

● Computing the
importance mask.

Stage 2

● Compute Sparse
Attention with mask.

6

Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

KV-Cache Storage

BSR (Block Compressed Row) Format - (B_r, B_c)

● More friendly to GPU Tensor Cores (16x8x16 for Ampere, 64xNx16 for Hopper).

7

KV-Cache Storage

Page Attention as Block Sparse Format

8

KV-Cache Storage

Radix Tree and Token Tree are sparse
matrix by nature.

But!!! The tree mask could be highly
sparse

● Still a lot of fragmentation in
block-sparse representation
(128, 128).

9

Figure from medusa

KV-Cache Storage

Column vector sparse (block sparse with block columns=1) reduce fragmentations
significantly.

10
Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

KV-Cache Storage

Sparse rows @ sparse columns is still compatible with Tensor Cores as long as their
last dimension is contiguous. (Octet Tiling, Magicube, TC-GNN, SparseTIR).

11

Figure from SparseTIR

FlashInfer workflow:
● Loading rows from global memory

(sparse) to shared memory (dense).
● Use dense tensor cores on shared

memory. (no waste).

Memory loading is still coalesced
because of the contiguous of last
dimension.

Composable Formats

● Lots of shared-prefix in reasoning
algorithms.

12

Attentions in LLM Serving - Variants

Lots of attention variants.

● Grouped Query Attention
● Multi-Latent Attention
● Grok/Gemma-style logits soft cap
● ALIBI bias
● …

13

Compute Abstraction - Compiler & Runtime

JIT Compiler:

● Customize Attention Variants by defining functors.
● Support continuous/sparse KV-Cache Storage.
● Compile-time scheduling for different problem shapes

Runtime:

● Variable-length dynamic Scheduling
● Programming interface compatible with open-source LLM serving engines.

14

JIT Compiler

FlashInfer implements highly customizable CUDA/Cutlass template for FlashAttention 2&3
on:

● Batch of requests / single request
● Block Sparse (with any block size) KV-Cache / Contiguous KV-Cache.

○ Compatible with mainstream LLM serving frameworks.
● Programmable functors for customizing attention variants (Inspired by FlexAttention &

AITemplate from Meta).

15

JIT Compiler

Customize Attention Variants by user-defined QueryTransform, KeyTransform,
LogitsTransform, LogitsMask functions. (inspired by FlexAttention)

16

JIT Compiler

Customize Attention Variants by user-defined QueryTransform, LogitsTransform, LogitsMask
functions.

- ALIBI Attention (Relative Attention Additional Bias)
- RoPE Attention

- Sliding Window Attention

- Custom Attention Mask
- …

17

Attention Template - Group Query Attention

18

Head-Group Packing

Fuse query rows and head
groups to increase the
operational intensity of
decode/incremental prefill
attention operators.

Attention Template - Sparse Gathering

Sparse Global to Shared Memcpy

● For contiguous storage, issue
TMA instructions for each tile.

● For sparse storage, issue
multiple LDGSTS async-copy
instructions.

○ TMA2D is not applicable for
gather/scatter.

19

Attention Template (MLA)

Multi-head Latency Attention (MLA) is a special form of Grouped Query Attention
(GQA) with large head dimension (not enough registers for storing output).

● Split on head dimension

20

Attentions in LLM Serving - Workload Heterogeneity

Decode:

● One token at a time
● len(Q) = 1

Prefill:

● len(Q) = len(KV)

Append (a.k.a incremental
prefill)

● Several tokens at a time.
● len(Q) < len(KV)

21

Tile-size selection

Select tile-size according to query length.

● Different tile-size for different problem shapes
○ CUDA-cores (67 TFLOPs/s), tile-size: 1x512
○ Tensor-cores (989 TFLOPs/s), tile-size: 16 x 512
○ Tensor-cores (989 TFLOPs/s), tile-size: 32 x 256
○ Tensor-cores (989 TFLOPs/s), tile-size: 64 x 128
○ Tensor-cores (989 TFLOPs/s), tile-size: 128 x 64
○ …

● Various pipeline design (for H100 and later)
○ 2 warp groups / 3 warp groups for MLA

Tile Layouts

22

Runtime Scheduler

Cost-model based deterministic
scheduling for variable length
requests.

Inspect sequence length
information ahead-of-time.

Goal:

● Load-balancing
● Zero wave-quantization

23

Compute Abstraction

Integration with LLM Serving Engines

● Init: JIT compilation of kernels of each attention
configuration (problem size, data-types, attention
variants).

● Plan: dynamic kernel scheduling
○ Load-balancing
○ Deterministic (reduction in deterministic order).
○ Cost amortized by multiple layers.

● Run: execute kernel according to plan information.

Inspector (plan)-Executor (run) mode.

Compatible with torch.compile and CUDAGraph.

init per configuration
wrapper = AttentionWrapper(task_info)

step = 0
while True:

step += 1
plan per generation step
wrapper.plan(...)
for i in range(layers):

...
run per layer
wrapper.run(...)
...

For CUDA graphs
g = torch.cuda.CUDAGraph()

warmup
with torch.cuda.graph(g):

for i in range(layers):
...
wrapper.run(...)
...

step = 0
while True:

step += 1
plan per generation step
wrapper.plan(...)
replay CUDA-Graph
g.replay()

24

FlashInfer: Storage and Compute Abstractions

25

Results - Paged Attention

Vector-Sparse Attention (page_size=1) vs Dense Attention

Sparsity at 10% overhead

26

Results - Load Balancing

Variable Split-K for better load balancing in variable length settings

● Constant/Uniform/Zipf distribution

27

Results (end-to-end)

FlashInfer w/ leading open-source LLM serving - sglang

Performance on Llama 3.1 70B on 4xH100

● Sglang (FlashInfer)
● Sglang (Triton)

Workloads

● ShareGPT
● Variable distribution

Up to 2x latency reduction than Triton backend

Results - Customized Attention

Customized Attentions (fused-RoPE attention in Streaming-LLM)

● 2x acceleration at kernel level.
● 30% end-to-end latency reduction on Streaming-LLM

29

Results - Parallel Generation

Parallel Generation (with different “n” in OpenAI API)

30

LLM-Specific Operators

31

Next Steps - Holistic Kernel

32

Next Steps - Holistic Kernel

33

Next Steps - Holistic Kernel

34

Community

● Originated as a research project.
● After over a year of development, the project now has 50+ contributors from

both industry and academia.

● Widely adopted by leading open-source LLM engines, including MLC-LLM,
vLLM, sglang, Hugging Face TGI (Text Generation Interface), Nanoflow, and
others.

35

FlashInfer - Kernel Library for LLM Serving

36

Position: Expanding on existing operators in PyTorch, cuBLAS, and similar
libraries for efficient LLM inference, with focus on:

● Attention Operators
○ Customizable Attention Templates optimized for LLM Serving scenario.

● GEMMs
○ SM-Constraint GEMM and Grouped GEMM (call cutlass under the hood).

● LLM-specific operators (Sampling, etc)
● Holistic Kernel Generation.

Mission: open-source CUDA kernel generator/library for foundation models.

● Welcome to join the community!
● Slack workspace for open discussions

Backup Slides

37

	Slide 1: Efficient and Customizable Kernel Generation for LLM Inference Serving
	Slide 2
	Slide 3: Attentions in LLM Inference Serving: Challenges
	Slide 4: Attentions in LLM Serving - KVCache Heterogenity
	Slide 5: Attentions in LLM Serving - KVCache Management
	Slide 6: Attentions in LLM Serving - KVCache Management
	Slide 7: KV-Cache Storage
	Slide 8: KV-Cache Storage
	Slide 9: KV-Cache Storage
	Slide 10: KV-Cache Storage
	Slide 11: KV-Cache Storage
	Slide 12: Composable Formats
	Slide 13: Attentions in LLM Serving - Variants
	Slide 14: Compute Abstraction - Compiler & Runtime
	Slide 15: JIT Compiler
	Slide 16: JIT Compiler
	Slide 17: JIT Compiler
	Slide 18: Attention Template - Group Query Attention
	Slide 19: Attention Template - Sparse Gathering
	Slide 20: Attention Template (MLA)
	Slide 21: Attentions in LLM Serving - Workload Heterogeneity
	Slide 22: Tile-size selection
	Slide 23: Runtime Scheduler
	Slide 24: Compute Abstraction
	Slide 25: FlashInfer: Storage and Compute Abstractions
	Slide 26: Results - Paged Attention
	Slide 27: Results - Load Balancing
	Slide 28: Results (end-to-end)
	Slide 29: Results - Customized Attention
	Slide 30: Results - Parallel Generation
	Slide 31: LLM-Specific Operators
	Slide 32: Next Steps - Holistic Kernel
	Slide 33: Next Steps - Holistic Kernel
	Slide 34: Next Steps - Holistic Kernel
	Slide 35: Community
	Slide 36: FlashInfer - Kernel Library for LLM Serving
	Slide 37: Backup Slides

