

Efficient and Customizable Kernel Generation for LLM Inference Serving

Zihao Ye

Apr 9th, 2025 Guest Lecture at @ CMU Machine Learning Systems University of Washington & NVIDIA

Major Operators in Large Language Models

Attention

- KV-Cache storage heterogeneity/sparsity
- Variable Sequence Length
- Attention Variant
- Shared-prefix in KV-Cache structure

GEMM

- Customized Epilogue
- Performance critical (close to speed of light)
- Dynamism: Group GEMM

Collective Communication

High-latency, can overlap with computation

Logits Post-Processing

Top-K/Top-P/Min-P/... sampling

FlashInfer: non-intrusive, high-performance kernel collectives for LLM Serving Engines.

Attentions in LLM Inference Serving: Challenges

- KV-Cache storage heterogeneity
 - Page-Table (vLLM)
 - RadixTree (sglang)
 - Pruning (H2O, ...)
 - Speculative Decoding (Tree Attention)
- Attention Variants
 - Different data-types, head dimensions, ...
 - Different query/key/value prologue, epilogue
 - Binary size explosion
- Prefix-reusing
 - Prefix caching
- Different phases
 - Prefill/decode/chunked-prefill/speculative decoding
- Runtime dynamism
 - Variable sequence length during generation

Attentions in LLM Serving - KVCache Heterogenity

Page Attention (vLLM): efficient memory management for variable sequence length.

KV-Cache are stored in Paged KV-Cache

Example generation process for a request with PagedAttention.

Attentions in LLM Serving - KVCache Management

Radix Attention (sglang)

- Designed for prefix-caching and reuse.
- Page_size = 1 for less fragmentation and higher cache hit-rate.
- Duplicate prefix are organized as a Radix Tree.

Attentions in LLM Serving - KVCache Management

KV-Cache Compression (e.g. Quest):

Stage 1

• Computing the importance mask.

Stage 2

• Compute Sparse Attention with mask.

Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

BSR (Block Compressed Row) Format - (B_r, B_c)

• More friendly to GPU Tensor Cores (16x8x16 for Ampere, 64xNx16 for Hopper).


```
indices[2:4] = [2,4]
```

```
indices[4:6] = [1,3]
```

Page Attention as Block Sparse Format

Radix Tree and Token Tree are sparse matrix by nature.

But!!! The tree mask could be highly sparse

• Still a lot of fragmentation in block-sparse representation (128, 128).

Figure from medusa

Column vector sparse (block sparse with block columns=1) reduce fragmentations significantly.

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

Sparse rows @ sparse columns is still compatible with Tensor Cores as long as their **last dimension** is *contiguous*. (Octet Tiling, Magicube, TC-GNN, SparseTIR).

FlashInfer workflow:

- Loading rows from global memory (sparse) to shared memory (dense).
- Use dense tensor cores on shared memory. (no waste).

Memory loading is still coalesced because of the contiguous of last dimension.

Figure from SparseTIR

Composable Formats

• Lots of shared-prefix in reasoning algorithms.

Attention Kernels with large block size, requests inside the same block access common KV-Cache (e.g. shared-prefix) via Shared Memory/Registers

Attentions in LLM Serving - Variants

Values

Keys

Queries

Lots of attention variants.

- Grouped Query Attention
- Multi-Latent Attention
- Grok/Gemma-style logits soft cap
- ALIBI bias

...

 $q_2 \cdot k_1 q_2 \cdot k_2$ $^{-1}$ 0 + $q_3 \cdot k_1 q_3 \cdot k_2 q_3 \cdot k_3$ •*m* -2 $^{-1}$ 0 $q_4 \cdot k_1 q_4 \cdot k_2 q_4 \cdot k_3 q_4 \cdot k_4$ -3-2 -10 $q_5 \cdot k_1 q_5 \cdot k_2 q_5 \cdot k_3 q_5 \cdot k_4 q_5 \cdot k_5$ -3 -2 0 -4-1Multi-head Grouped-query Multi-guery

0

 $q_1 \cdot k_1$

Compute Abstraction - Compiler & Runtime

JIT Compiler:

- **Customize** Attention Variants by defining functors.
- Support continuous/sparse KV-Cache Storage.
- **Compile-time scheduling** for different problem shapes

Runtime:

- Variable-length dynamic Scheduling
- Programming interface compatible with open-source LLM serving engines.

JIT Compiler

FlashInfer implements highly customizable CUDA/Cutlass template for FlashAttention 2&3 on:

- Batch of requests / single request
- Block Sparse (with any block size) KV-Cache / Contiguous KV-Cache.
 - Compatible with mainstream LLM serving frameworks.
- Programmable functors for customizing attention variants (Inspired by FlexAttention & AITemplate from Meta).

JIT Compiler

$$\begin{split} \text{SigmoidAttn}(\boldsymbol{X}) &= \sigma(\boldsymbol{Q}\boldsymbol{K}^T/\sqrt{d_{qk}})\boldsymbol{V},\\ \text{with } \sigma: u \mapsto \text{sigmoid}(u+b) \coloneqq (1+e^{-(u+b)})^{-1}. \end{split}$$

Customize Attention Variants by user-defined **QueryTransform**, **KeyTransform**, **LogitsTransform**, **LogitsMask** functions. (inspired by **FlexAttention**)

Attention Specification in Python	Part 1: Kernel Parameters Class	Part 2: Kernel Traits class		
<pre>spec_decl = r*** template <typename kerneltraits_="" params_,="" typename=""> struct FlashSigmoid { using Params = typename Params_; using KernelTraits = typename KernelTraits_; static constexpr bool use_softmax = false; float scale, bias; FlashSigmoid(const Params& params, int batch_idx, uint8_t* smem_ptr) { // Copy from CUDA constant memory to registers scale = params.scale; bias = params.scale; dist_score, int batch_idx, int qo_idx, int kv_idx, int qo_head_idx, int kv_head_idx) { return 1. / (1. + expf(-(logits_score + scale + bias))); } i attn_spec = AttentionSpec(*FlashSigmoid*, dtype_g.tead_dim_is_sparse. additional_vents=[(*scale*, *float*), (*bias*, *float*)], additional_tensors=[], spec_decl=spec_decl) </typename></pre>	<pre>template <typename dtypekv,="" dtypeo,<br="" dtypeq,="" typename="">typename IdType> struct Params i DTypeQ* q; DTypeKV* k, v; DTypeKV* k, v; float* lse; 777</typename></pre>	<pre>struct KernelTraits { static constexpr HEAD_DIM = {{head_dim}}; static constexpr IS_SPARSE = {{is_sparse}}; }; Part 3: Kernel Body</pre>		
	// (generated) additional vars float scale; float bias; }: Part 4: Register custom operators in PyTorch	<pre>template <typename attentionspec=""> _globalKernelTemplate(AttentionSpec::Params params) { // Init attention specification class. AttentionSpec attn(params, batch_idx, smem_ptr); </typename></pre>		
	<pre>torch::Tensor attention_call(torch::Tensor q, torch::Tensor k, torch::Tensor v, float scale, float bias // (generated) additional vars) { auto kernel = KernelTemplate<flashsigmoid<params<{[dtype_q], {[dtype_kx]}, [[dtype_o]], [[idtype]]>, KernelTraits>>; } // Register torch custom ops TORCH_LIBRARY_IMPL('FlashSigmoid', CUDA, m) { m.impl(*run", &attention_call); }</flashsigmoid<params<{[dtype_q], </pre>	<pre>// Iterate over all elements inside the thread logits tile. for (int i = 0; i < size(logits_tile); ++i) { // convert register index i to qo_idx, kv_idx, etc. qo_idx = get<0>(logits_tile(i)); kv_idx = get<1>(logits_tile(i)); logits_tile(i) = atto.LogitsTransform(params.logits_tile(i), batch_idx, qo_idx, kv_idx, qo_head_idx, kv_head_idx); } }</pre>		

JIT Compiler

Customize Attention Variants by user-defined **QueryTransform**, **LogitsTransform**, **LogitsMask** functions.

- ALIBI Attention (Relative Attention Additional Bias)
- RoPE Attention

. . .

 $\operatorname{RoPE}(\mathbf{q}, \operatorname{offset}(q)) \cdot \operatorname{RoPE}(\mathbf{k}, \operatorname{offset}(k))^T$

- Sliding Window Attention

$$(\mathbf{q} \cdot \mathbf{k}^T) \cdot (\text{offset}(q) - \text{offset}(k) < w)$$

- Custom Attention Mask

(b) Sliding window attention

Attention Template - Group Query Attention

Head-Group Packing

Fuse query rows and head groups to increase the operational intensity of decode/incremental prefill attention operators.

Fused row index to Q/O head index: $qo_head_idx = kv_head_idx * g + (i'\% g)$

Fused query(output) length $~l_{qo}^\prime = g \cdot l_{qo} = 15$

Attention Template - Sparse Gathering

Sparse Global to Shared Memcpy

- For contiguous storage, issue TMA instructions for each tile.
- For sparse storage, issue multiple LDGSTS async-copy instructions.
 - TMA2D is not applicable for gather/scatter.

Attention Template (MLA)

Multi-head Latency Attention (MLA) is a special form of Grouped Query Attention (GQA) with large head dimension (**not enough registers for storing output**).

• Split on head dimension

Attentions in LLM Serving - Workload Heterogeneity

Decode:

- One token at a time
- len(Q) = 1

Prefill:

• len(Q) = len(KV)

Append (a.k.a incremental prefill)

- Several tokens at a time.
- Ien(Q) < Ien(KV)</p>

Tile-size selection

Select tile-size according to query length.

- Different tile-size for different problem shapes
 - o CUDA-cores (67 TFLOPs/s), tile-size: 1x512
 - Tensor-cores (989 TFLOPs/s), tile-size: 16 x 512
 - O Tensor-cores (989 TFLOPs/s), tile-size: 32 x 256
 - O Tensor-cores (989 TFLOPs/s), tile-size: 64 x 128
 - O Tensor-cores (989 TFLOPs/s), tile-size: 128 x 64

0 ...

- Various pipeline design (for H100 and later)
 - 0 2 warp groups / 3 warp groups for MLA

Runtime Scheduler

Cost-model based **deterministic** scheduling for variable length requests.

Inspect sequence length information **ahead-of-time**.

Goal:

- Load-balancing
- Zero wave-quantization

Compute Abstraction

Integration with LLM Serving Engines

- Init: JIT compilation of kernels of each attention configuration (problem size, data-types, attention variants).
- Plan: dynamic kernel scheduling
 - Load-balancing
 - Deterministic (reduction in deterministic order).
 - Cost amortized by multiple layers.
- **Run**: execute kernel according to plan information.

Inspector (plan)-Executor (run) mode.

Compatible with torch.compile and CUDAGraph.

init per configuration
wrapper = AttentionWrapper(task_info)

```
step = 0
while True:
   step += 1
   # plan per generation step
   wrapper.plan(...)
   for i in range(layers):
```

```
...
# run per layer
wrapper.run(...)
```

. . .

```
# For CUDA graphs
g = torch.cuda.CUDAGraph()
```

```
# warmup
with torch.cuda.graph(g):
    for i in range(layers):
        ...
        wrapper.run(...)
        ...
step = 0
while True:
    step += 1
    # plan per generation step
    wrapper.plan(...)
    # replay CUDA-Graph
    g.replay()
```

FlashInfer: Storage and Compute Abstractions

Results - Paged Attention

Vector-Sparse Attention (page_size=1) vs Dense Attention

Sparsity at 10% overhead

FlashInfer FA2 (sparse, page_size=1)
FlashInfer FA2 (contiguous)
FlashInfer FA3 (sparse, page_size=1)
FlashInfer FA3 (contiguous)
FlashInfer FA3 (sparse, page_size=1)
FlasHInfer FA3 (sparse, page_siz=1)
FlasHInfer FA3 (sparse, page_siz=1)
FlasHInfer FA3 (sparse, page_s

TFLOPs/s

Results - Load Balancing

Variable Split-K for better load balancing in variable length settings

• Constant/Uniform/Zipf distribution

Results (end-to-end)

FlashInfer w/ leading open-source LLM serving - sglang

Performance on Llama 3.1 70B on 4xH100

- Sglang (FlashInfer)
- Sglang (Triton)

Workloads

- ShareGPT
- Variable distribution

Up to 2x latency reduction than Triton backend

Results - Customized Attention

Customized Attentions (fused-RoPE attention in Streaming-LLM)

- 2x acceleration at kernel level.
- 30% end-to-end latency reduction on Streaming-LLM

Results - Parallel Generation

Parallel Generation (with different "n" in OpenAI API)

LLM-Specific Operators

Top-P/Top-K sampling

- Relies on sorting (slow on GPU)
- Vocabulary size growing in recent years (from 32k to 128k)
- Lots of data-dependent operators that are hard to fuse.
- FlashInfer provides template for rejection sampling on GPUs
 - Not relying on sorting
 - Fast convergence (within 10 rounds)
 - User-defined filter functions (topp/top-k/min-p/etc).
- Next step: compile the entire postprocessing pipeline (w/ repetition penalty, etc.)

"the" "eft"	*and*	*60*	747	*14*	"(hai)"
p=0.12 p=0.18	p=0.34	p=0.87	p=0.33	p=0.38	p=0.10

Next Steps - Holistic Kernel

- Imbalance between I/O, Compute, Network bandwidth usage.
- Overlap Compute-Bound, I/O-Bound, Networking operators
 - Split requests into nano-batches.
 - Dispatch different workload to different SM on GPUs.
 - Use multi-stream to isolate the operators.
- Kernel generation in Nanoflow:
 - SM-Constrained (Horizontally fused) GEMM/Communication/Attention operators.
 - Customization for different models.
 - Using Cutlass as backbone GEMM generator.

Next Steps - Holistic Kernel

- Example: Chunked Prefill
 - Piggybacking decode with prefill, require attention kernels.
 - Single kernel with fixed tile size
 - Sub-optimal for prefill or sub-optimal for decode
 - One prefill kernel + one decode kernel
 - Low-occupancy for prefill kernel
 - POD-Attention (Aditya et al.)
 - Compile both large/small tile size.
 - Runtime dispatch to one implementation.

Next Steps - Holistic Kernel

- Lots of opportunities for prefix-cache reuse in agent-based system
 - Can be formulated as attention on several different sparse matrix, each with different block size.
- Low-occupancy for each kernel.
- Holistic Kernel
 - Compile fused kernel for all tile sizes kernels.
 - Software scheduling for dispatching and load-balancing.

Community

- Originated as a research project.
- After over a year of development, the project now has 50+ contributors from both industry and academia.

• Widely adopted by leading open-source LLM engines, including MLC-LLM, vLLM, sglang, Hugging Face TGI (Text Generation Interface), Nanoflow, and others.

FlashInfer - Kernel Library for LLM Serving

Position: Expanding on existing operators in PyTorch, cuBLAS, and similar libraries for efficient LLM inference, with focus on:

- Attention Operators
 - Customizable Attention Templates optimized for LLM Serving scenario.
- GEMMs
 - SM-Constraint GEMM and Grouped GEMM (call cutlass under the hood).
- LLM-specific operators (Sampling, etc)
- Holistic Kernel Generation.

Mission: open-source CUDA kernel generator/library for foundation models.

- Welcome to join the community!
- Slack workspace for open discussions

Backup Slides