
1

Beidi Chen (CMU)

Sequoia: Scalable, Robust, and Hardware-aware Speculative Decoding. Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin,
Zhihao Jia, Beidi Chen.
https://github.com/Infini-AI-Lab/Sequoia

TriForce: Rethinking Applicable Speculative Decoding For Long-Context Model Serving. Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, Beidi Chen.

Scalable, Robust, and Hardware-aware Speculative
Decoding for Efficient Long Sequence Generation

https://github.com/Infini-AI-Lab/Sequoia

LLMs are Powerful, but expensive to deploy

2

Conversational AI Content Generation AI Agents
10/27/23, 1:21 AM ChatGPT

https://chat.openai.com/c/6e1bfe0b-519b-40bb-af60-f4a28df6df11 1/1

Generate an opening sentence for my talk "Sparsity for Efficient Long Sequence Generation

"

"Ladies and gentlemen, today we delve into the fascinating world of sparsity as a key

ingredient for achieving efficient long sequence generation."

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

Efficient Long Sequence Generation

Default (GPT-3.5)

LLMs are Powerful, but expensive to deploy

Major Challenges: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for parameters,
§ 160 GB for activation (KV cache),
 even with Multi-Group-Attention (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

3

Conversational AI Content Generation

 , but Very Expensive to Deploy

AI Agents

LLMs are Powerful, but expensive to deploy

4

 , but Very Expensive to Deploy

0

1

10

100

1,000

10,000

2018
2019

2020
2021

Exponential model size

1

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
5

Conversational AI Content Generation Text Summarization

 , but Very Expensive to Deploy

I

I love randomized algorithms

I love randomized

I love Cache KV

Cache KV

Cache KV

…

Load model

Load model

Load model

Load model

2

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
6

 , but Very Expensive to Deploy

We need to design more efficient algorithms for LLM inference!

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

Sequoia (new 🔥) TriForce (coming soon🔥)

• Serve a Llama2-70B on a single RTX-4090 with
0.57s / token latency, 9× faster than
DeepSpeed-Zero Offloading

• Serve a Llama2-7B, Llama2-13B, and Vicuna-
33B on an A100 by 4.04×, 3.73×, and 2.27×

TriForce: Long Context Speculative
 Decoding

Hanshi Sun

Mar 13, 2024• Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8×
faster than DeepSpeed-Zero Offloading

• 2.3× speedup on a single A100 GPU

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

Sequoia (new 🔥) TriForce (coming soon🔥)

• Serve a Llama2-70B on a single RTX-4090 with
0.57s / token latency, 9× faster than
DeepSpeed-Zero Offloading

• Serve a Llama2-7B, Llama2-13B, and Vicuna-
33B on an A100 by 4.04×, 3.73×, and 2.27×

TriForce: Long Context Speculative
 Decoding

Hanshi Sun

Mar 13, 2024

ulativespeccontext

Value

Query

0.3 0.1 0.5 0.1

StreamingLLM Cache

Retrieval Cache

Full Cache

Draft Model

Target Model

TriForce

new algorithm for long context ulative

The new algorithm for long

The spec

Speculation Phase 2: !! = 6

dec
dec oding significantly enh ances the processing inference

Speculation Phase 1: !" = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality processing

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Final Result:

dec oding significantly enh ances the inference

Draft Model KV Cache:

Target Model KV Cache: Key

• Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.25s / token latency,
11.22× faster than DeepSpeed-Zero Offloading

• 2.31× speedup on a single A100 GPU

Background: Transformer Architecture

9

𝑊!,𝑊" ∈ 𝑅#$%#

Attention MLP

{𝑊& ,𝑊' ,𝑊(,𝑊) 	} ∈ 𝑅#$#

Background: Transformer Architecture

10

𝐴 = softmax 𝑄𝐾* V 𝑊! 𝑊"

Attention MLP

LLMs are Powerful, but expensive to deploy

11

 , but Very Expensive to Deploy

0

1

10

100

1,000

10,000

2018
2019

2020
2021

Exponential model size

1

Background: Transformer Architecture

12

𝑊!,𝑊" ∈ 𝑅#$%#

Attention MLP

{𝑊& ,𝑊' ,𝑊(,𝑊) 	} ∈ 𝑅#$#

1313

Existing Approaches and Challenges

The idea of speculative decoding to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
• (Chen et al 2023, Leviathan et al 2023, SpecInfer, SpecTr, …)

*SpecInfer

1414

Existing Approaches and Challenges

The idea of speculative decoding to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
• (Chen et al 2023, Leviathan et al 2023, SpecInfer, SpecTr, …)

But hard to consistently and drastically speed up LLM Inference
• token tree construction algorithms do not scale with larger speculation budget

...
Single sequence of tokens

k independent sequences of tokens

1515

Existing Approaches and Challenges

The idea of speculative decoding to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
• (Chen et al 2023, Leviathan et al 2023, SpecInfer, SpecTr, …)

But hard to consistently and drastically speed up LLM Inference
• token tree construction algorithms do not scale with larger speculation budget
• token tree sampling and verification algorithms are not robust across different

hyperparameter configuration

1616

Existing Approaches and Challenges

The idea of speculative decoding to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
• (Chen et al 2023, Leviathan et al 2023, SpecInfer, SpecTr, …)

But hard to consistently and drastically speed up LLM Inference
• token tree construction algorithms do not scale with larger speculation budget
• token tree sampling and verification algorithms are not robust across different

hyperparameter configuration
• Frameworks are not hardware-aware

1717

Existing Approaches and Challenges

The idea of speculative decoding to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
• (Chen et al 2023, Leviathan et al 2023, SpecInfer, SpecTr, …)

But hard to consistently and drastically speed up LLM Inference
• token tree construction algorithms do not scale with larger speculation budget
• token tree sampling and verification algorithms are not robust across different

hyperparameter configuration
• Frameworks are not hardware-aware

How can we design an optimal tree-based speculative decoding method to maximize
speedups on modern hardware? Sequoia!

18

Sequoia tree construction algorithm: (1) formulate it as a constrained optimization problem,
(2) use dynamic programming to solve this problem optimally and efficiently.

Intuition:
We should not expand all the branches with
the same probability because they usually
have very different chance being accepted!

Scalable: Optimal Tree Construction

Maximize the expected number of tokens F (T) generated by
verifying a token tree T , under a constraint on the size of T.

19

Sequoia tree construction algorithm: (1) formulate it as a constrained optimization problem,
(2) use dynamic programming to solve this problem optimally and efficiently.

Scalable: Optimal Tree Construction

20

Sequoia sampling and verification algorithm: sample without replacement from the same
draft model.

Intuition:
(i) Low-temperature, sample with replacement
will likely to sample the same token. If being
rejected, budgets wasted!

(ii) High-temperature, top-k sampling will have
little chance getting exactly the same token as
target model.

Robust: Sampling without Replacement

21

Sequoia hardware-aware tree optimizer: search for optimal tree shape and depth.

Intuition: Turning point is different for different
model size and hardware.

Hardware-aware: Tree Optimizer

2222

Sequoia: 9X DeepSpeed-Zero-Inference on RTX40903/26/24, 1:10 PM Serving LLMs on an RTX4090 with Sequoia

https://infini-ai-lab.github.io/Sequoia-Page/ 2/6

Serving Solutions by Sequoia

GPU Bandwidth(GB/s) Target

Model

Draft

Model

TBT(s) Baseline(s)

4090 31.5 Llama2-

70B

Llama2-7B 0.57 4.54

4090 31.5 Vicuna-

33B

TinyVicuna-

1B

0.35 1.78

4090 31.5 Llama2-

22B

TinyLlama-

1.1B

0.17 0.95

4090 31.5 InternLM-

20B

InternLM-

7B

0.17 0.77

4090 31.5 Llama2-

13B

TinyLlama-

1.1B

0.09 0.27

2080Ti 15.8 Vicuna-

33B

TinyVicuna-

1B

0.87 4.81

2080Ti 15.8 Llama2-

22B

TinyLlama-

1.1B

0.53 3.04

2080Ti 15.8 Llama2-

13B

TinyLlama-

1.1B

0.34 1.53

Sequoia can speed up LLM inference for a variety of model sizes and

types of hardware. We evaluate Sequoia with LLMs of various sizes

(including Llama2-70B-chat, Vicuna-33B, Llama2-22B, InternLM-20B and

Llama2-13B-chat), on 4090 and 2080Ti, prompted by MT-Bench. The

hardware platforms have di�erent GPUs, CPU RAMs and CPU-GPU

bandwidth. The evaluation results are listed above.

Here we show a demo for Llama2-70B inference on a single RTX-4090

(with and without Sequoia. Video plays at 4X speed).

Sequoia, a speculative decoding framework that mitigates the gap in the
memory hierarchy, adapts to any draft/target pairs and any AI accelerators.

2323

Sequoia: 4.04x Speed up for Llama-7B on A100

Sequoia demonstrates impressive on-chip performance -- up-to 4.04× speed-
up for Llama2-7B on A100.

Table 4: On-chip results (A100): The optimal tree configuration and speedup for di↵erent pairs of draft
and target models, and di↵erent temperatures, for Sequoia vs. SpecInfer. We specify the average number of
generated tokens per decoding step in parentheses, next to the speedup factor. Sequoia attains up to 4.04⇥
speedup on an A100.

Target LLM Draft Model T Dataset
Tree Config.

Speedup
SpecInfer SpecInfer

(size, depth) 5⇥8 8⇥8

Llama2-7B JF68M 0 C4 (128,10) 4.04 ⇥(5.08) 3.45⇥(3.96) 3.70⇥(4.11)
Llama2-7B JF68M 0.6 C4 (128,7) 3.18⇥(3.92) 2.47⇥(2.97) 2.45⇥(3.05)
Llama2-7B JF68M 0 OpenWebText (128,7) 3.22⇥(3.86) 2.79⇥(3.15) 2.96⇥(3.24)
Llama2-7B JF68M 0.6 OpenWebText (128,6) 2.71⇥(3.33) 2.10⇥(2.54) 2.08⇥(2.55)
Llama2-7B JF68M 0 CNN Daily (128,7) 3.41⇥(4.05) 2.95⇥(3.27) 3.10⇥(3.37)
Llama2-7B JF68M 0.6 CNN Daily (128,6) 2.83⇥(3.45) 2.11⇥(2.58) 2.22⇥(2.69)

Llama2-13B JF68M 0 C4 (64,9) 3.73⇥(4.20) 3.30⇥(3.64) 3.10⇥(3.75)
Llama2-13B JF68M 0.6 C4 (64,7) 3.19⇥(3.57) 2.48⇥(2.87) 2.42⇥(3.00)
Llama2-13B JF68M 0 OpenWebText (64,7) 3.18⇥(3.49) 2.77⇥(3.05) 2.59⇥(3.14)
Llama2-13B JF68M 0.6 OpenWebText (64,6) 2.77⇥(3.06) 2.17⇥(2.49) 2.01⇥(2.52)
Llama2-13B JF68M 0 CNN Daily (64,7) 3.33⇥(3.68) 2.95⇥(3.22) 2.75⇥(3.32)
Llama2-13B JF68M 0.6 CNN Daily (64,6) 2.88⇥(3.17) 2.17⇥(2.54) 2.09⇥(2.60)

Llama2-13B JF160M 0 C4 (64,7) 3.10⇥(4.69) 2.74⇥(4.33) 2.58⇥(4.42)
Llama2-13B JF160M 0.6 C4 (64,6) 2.83⇥(4.06) 2.07⇥(3.46) 2.02⇥(3.53)
Llama2-13B JF160M 0 OpenWebText (64,6) 2.72⇥(3.90) 2.26⇥(3.58) 2.15⇥(3.66)
Llama2-13B JF160M 0.6 OpenWebText (64,5) 2.49⇥(3.38) 1.80⇥(2.96) 1.77⇥(3.07)
Llama2-13B JF160M 0 CNN Daily (64,6) 2.84⇥(4.05) 2.36⇥(3.73) 2.25⇥(3.83)
Llama2-13B JF160M 0.6 CNN Daily (64,5) 2.55⇥(3.47) 1.79⇥(2.97) 1.74⇥(3.03)

Vicuna-33B SL1.3B 0 C4 (64,6) 2.27⇥(4.28) 1.83⇥(3.86) 1.73⇥(3.96)
Vicuna-33B SL1.3B 0.6 C4 (64,6) 2.19⇥(4.16) 1.64⇥(3.53) 1.52⇥(3.56)
Vicuna-33B SL1.3B 0 OpenWebText (64,5) 2.21⇥(3.93) 1.75⇥(3.70) 1.65⇥(3.79)
Vicuna-33B SL1.3B 0.6 OpenWebText (64,5) 2.13⇥(3.82) 1.57⇥(3.36) 1.47⇥(3.43)
Vicuna-33B SL1.3B 0 CNN Daily (64,5) 2.21⇥(3.93) 1.75⇥(3.71) 1.65⇥(3.79)
Vicuna-33B SL1.3B 0.6 CNN Daily (64,5) 2.16⇥(3.86) 1.58⇥(3.40) 1.46⇥(3.43)

Table 5: O✏oading results (L40): The optimal tree configuration and speedup for di↵erent pairs of draft
and target models, and di↵erent temperatures, for Sequoia vs. SpecInfer. We specify the average number of
generated tokens per decoding step in parentheses, next to the speedup factor. Sequoia attains up to 9.96⇥
speedup in the o✏oading setting on an L40.

Target LLM Draft Model T Dataset
Tree Config.

Speedup
E2E Latency SpecInfer

(size, depth) s/token 16⇥48

Llama2-70B Llama2-7B 0 C4 (768,22) 9.96⇥(12.18) 0.56 6.46⇥(8.66)
Llama2-70B Llama2-7B 0.6 C4 (768,23) 8.26⇥(10.12) 0.69 5.20⇥(6.93)
Llama2-70B Llama2-7B 0 OpenWebText (768,18) 8.14⇥(9.83) 0.69 5.50⇥(7.36)
Llama2-70B Llama2-7B 0.6 OpenWebText (768,19) 7.39⇥(9.05) 0.76 4.64⇥(6.18)
Llama2-70B Llama2-7B 0 CNN Daily (768,17) 8.78⇥(10.46) 0.64 5.91⇥(7.87)
Llama2-70B Llama2-7B 0.6 CNN Daily (768,18) 8.03⇥(9.58) 0.70 4.68⇥(6.24)

Main Results. We evaluate Sequoia using di↵erent temperatures, draft and target model pairs, and
hardware configurations. Results are shown in Table 4 (A100 on-chip) and Table 5 (L40 o✏oading). We observe
that Sequoia consistently speeds up LLM decoding in a wide range of settings. Sequoia reaches up to 4.04⇥
speedup for the on-chip setting, and up to 9.96⇥ speedup for the o✏oading setting, as a result of the huge gap
between computation capacity and memory bandwidth. Notably, for the o✏oading setting on L40, Sequoia
can achieve as low as 0.56 s/token latency. We present additional on-chip results (L40 GPU) in Appendix D.

Analysis. We made several interesting observations on the interplay between Sequoia tree construction,
sampling and verification, and hardware-aware optimizer. (1) Sequoia selects much larger trees in the o✏oading

10

2424

Demo

2525

Demo

But how about long-context generation?

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

Sequoia (new 🔥) TriForce (coming soon🔥)

• Serve a Llama2-70B on a single RTX-4090 with
0.57s / token latency, 9× faster than
DeepSpeed-Zero Offloading

• Serve a Llama2-7B, Llama2-13B, and Vicuna-
33B on an A100 by 4.04×, 3.73×, and 2.27×

TriForce: Long Context Speculative
 Decoding

Hanshi Sun

Mar 13, 2024• Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8×
faster than DeepSpeed-Zero Offloading

• 2.3× speedup on a single A100 GPU

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
27

Conversational AI Content Generation Text Summarization

 , but Very Expensive to Deploy

I

I love randomized algorithms

I love randomized

I love Cache KV

Cache KV

Cache KV

…

Load model

Load model

Load model

Load model

2

Background: Transformer Architecture

28

𝐴 = softmax 𝑄𝐾* V

Attention

29

KV Cache Bottleneck

I

Love

Randomized

Algorith
ms

Randomize
d

LoveI

Algorithms

Q

K cache

KV states for context or previously
generated tokens will be cached
to avoid re-computation.

KV cache size scales linearly with sequence length and batch size.

30

KV Cache Bottleneck

3131

Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!

But hard to adapt to generation:
• Reduce quadratic attention but not KV cache size

§ e.g., FlashAttention, Reformer
• Result high cache miss rates and degrade accuracy

§ e.g., Sparse Transformer
• Expensive eviction policy

§ e.g., Gisting Tokens

An ideal cache has a small cache size, a low miss rate, and a low-cost eviction policy.

32

Sparsity for Smaller Cache Size

Observation: although densely trained, LLMs
• attention score matrices are highly sparse,

with a sparsity over 95% in almost all layers
• leads to 20× potential KV cache reduction
• maintains same accuracy

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.
(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.

33

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.

34

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it
I

Love

Randomized

Algorith
ms

Randomize
d

LoveI

Algorithms

Q

K cache

35

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution
• masking heavy-hitter tokens degrades model quality

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

36

Greedy Algorithm for Low-cost Policy

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to deploy such algorithm without access to the full attention?

Idea: local greedy algorithm
• sum up the attention scores of the previous tokens every decoding step
• Add local / recent tokens

37

H2O: Heavy Hitter Oracle

0.1

0.1 0.5

Children laughed and the sunny parkplayed

0.2 0.1 0.1

1

0.9

0.4

0.03 0.02 0.2 0.05 0.9

0.6

in

1.43 0.651.52 0.9

0.6

0.03 0.02 0.05 0.9

0.1

0.1 0.5

0.2 0.1 0.1

1

0.9

0.4

0.2 0.3 0.01 0.02 0.9

0.6

1.6 0.621.8 0.9

0.01

0.03 0.04 0.02 0.90.01

0.51

0.4

0.1

0.1

0.1 0.5

Children laughed and in the sunny parkplayed

0.2 0.1

1

0.9

0.6

0.2 0.1 0.1 0.6

1.4 0.61.5 0.5

0.4

0.1

0.4

0.1Query

Key

Value

Decoding Step 4

Value

Key

0.03QueryDecoding Step 5

0.6

0.02Eviction w. Global Statistic
(infeasible)

3838

H2O: 3-29X Throughput and 1.9X Latency

Hugging Face Deep Speed FlexGen H2O

Throughput (T4) token/s 0.6 0.6 8.5 18.83 (3-29X)

• compatible with quantization
• generate sentences with fewer repeated words and more creativity

A100 FlexGen H2O

Throughput (token/s) 494 918 (1.9X)

Latency (s) 99 53 (1.9X)

Model Input

LLaMA-7B Full Cache
Output

LLaMA-7B Local 20% Cache
Output

LLaMA-7B 20% Cache
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that he began to cry. The patrons were so moved that they
began to cry, and the musician was so

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

He ((((((((((((((, [)), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

39

Model Input

LLaMA-7B Full Cache
Output

LLaMA-7B Local 20% Cache
Output

LLaMA-7B 20% Cache
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that he began to cry. The patrons were so moved that they
began to cry, and the musician was so

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

He ((((((((((((((, [)), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

What are these heavy hitters?

40

First few tokens!

Phenomenon: Attention Sink

Average attention logits in Llama-2-7B over 256 sentences

• Observation: large attention scores are given to initial tokens, even if they're not semantically significant.
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

41StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.

• SoftMax operation's role in creating attention sinks — attention scores have to
sum up to one for all contextual tokens. (SoftMax-Off-by-One, Miller et al. 2023)

• Initial tokens' advantage in becoming sinks due to their visibility to subsequent
tokens, rooted in autoregressive language modeling.

• The model learns a bias towards their absolute position
 rather than the semantics are crucial.

Understanding Attention Sinks

Llama-2-13B PPL ()

0+1024 (window) 5158.07

4+1024 5.40

4”\n”+1020 5.6

42StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.

• Pre-train with a Dedicated Attention Sink Token

• Similar Phenomenon in Darcet et al. Vision transformers need registers

Understanding Attention Sinks
VISION TRANSFORMERS NEED REGISTERS

Timothée Darcet1,2, Maxime Oquab1, Julien Mairal2 & Piotr Bojanowski1
1 FAIR, Meta
2 INRIA
{timdarcet,qas,bojanowski}@meta.com
julien.mairal@inria.fr

ABSTRACT

Transformers have recently emerged as a powerful tool for learning visual rep-
resentations. In this paper, we identify and characterize artifacts in feature maps
of both supervised and self-supervised ViT networks. The artifacts correspond to
high-norm tokens appearing during inference primarily in low-informative back-
ground areas of images, that are repurposed for internal computations. We propose
a simple yet effective solution based on providing additional tokens to the input se-
quence of the Vision Transformer to fill that role. We show that this solution fixes
that problem entirely for both supervised and self-supervised models, sets a new
state of the art for self-supervised visual models on dense visual prediction tasks,
enables object discovery methods with larger models, and most importantly leads
to smoother feature maps and attention maps for downstream visual processing.

Without registers With registers
Input DeiT-III CLIP DINOv2 DeiT-III CLIP DINOv2

Figure 1: Register tokens enable interpretable attention maps in all vision transformers, similar to
the original DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for
better visualisation. More qualitative results are available in appendix D.

1 INTRODUCTION

Embedding images into generic features that can serve multiple purposes in computer vision has
been a long-standing problem. First methods relied on handcrafted principles, such as SIFT (Lowe,
2004), before the scale of data and deep learning techniques allowed for end-to-end training. Pur-
suing generic feature embeddings is still relevant today, as collecting valuable annotated data for
many specific tasks remains difficult. This difficulty arises because of the required expertise (e.g.,
medical data, or remote sensing) or the cost at scale. Today, it is common to pretrain a model for
a task for which plenty of data is available and extract a subset of the model to use as a feature
extractor. Multiple approaches offer this possibility; supervised methods, building on classification

1

ar
X

iv
:2

30
9.

16
58

8v
1

 [c
s.C

V
]

28
 S

ep
 2

02
3

43

StreamingLLM

44StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.

Infinite Streaming Ability

45

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
• Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: Test:

Opportunity with StreamingLLM:

Train: Test:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ? ?

1 2 3 4 5 6 7 8 1 2 3 4 x x 5 6 7 8

Stably Model up to 4 Million Tokens

46

Dense Attention Window Attention Sliding Window

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

Dense Attention Window Attention Sliding Window

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

22X Faster than Sliding Window Recomputation

47

Window
Attention

StreamingLLM

Window
Attention
(Re-compute)

Dense Attn

Infinite Streaming Ability

48

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
• Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: Test:

Opportunity with StreamingLLM:

Train: Test:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ? ?

1 2 3 4 5 6 7 8 1 2 3 4 x x 5 6 7 8

The perplexity remains stable throughout up to 4 Million Tokens!

But StreamingLLM will forget the middle contents?

StreamingH2O: Infinite Streaming Ability

49

Similar position squeezing can be deployed on H2O

Train: Test:1 2 3 4 5 6 7 8 1 x 2 x 3 4 5 6 7 8

5050

Existing Approaches and Challenges

But it is hard to know what we loose …
What if we compressed very important info?

How about speculative decoding?
But training very long-context draft model sounds like a painful job …

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

5151

How about KV Compression + Speculative Decoding!

(a) (b) (c)

Figure 2: (a) A continuously increasing natural divergence between the draft model with StreamingLLM
or Sliding-window with Re-computation and Llama2-7B-128K is witnessed as the sequence length increases,
indicating a falling acceptance rate for speculative decoding with longer contexts. Additionally, temperature
sensitivity signals a lack of robustness. (b) Compared with model weights, KV cache gradually becomes another
bottleneck with long contexts. (c) KV cache occupies most of the memory as the context length increases.

to eviction-based methods such as StreamingLLM and H2O. We further demonstrated its effectiveness and
robustness on different datasets.

• In Section 4.2, we propose a hierarchical system to address the dual memory bottlenecks. Using a lightweight
model paired with a StreamingLLM cache for initial speculations, we can reduce the drafting latency for
the subsequent speculation stage, thereby accelerating end-to-end inference.

Empirically, in Section 5, we perform extensive experiments and ablation studies to demonstrate the effectiveness
of TriForce. We show that TriForce achieves up to 2.31⇥ speedup for Llama2-7B-128K on a single A100
GPU on top of Hugging Face [41] with CUDA graphs [28]. For the offloading setting, TriForce attains an
impressive 7.78⇥ on two RTX 4090 GPUs, reaching 0.108 s/token—only half as slow as the auto-regressive
baseline on an A100. TriForce can efficiently serve a Llama2-13B with 128K contexts with 0.226s/token,
which is 7.94⇥ faster than a highly optimized offloading system. Further, we show that: (i) TriForce has
a theoretical 13.1⇥ upper bound, demonstrating exceptional scalability when dealing with long contexts; (ii)
TriForce is robust across various temperature settings, maintaining an acceptance rate above 0.9 even for a
temperature of 1.0; and (iii) TriForce’s ability to efficiently process large batches, consistently outperforming
the small model with StreamingLLM cache across all configurations, achieving a 1.9⇥ speedup for a batch size
of six, where each sample consists of 19K contexts.

2 Background

2.1 Speculative Decoding

Speculative decoding [5, 13, 17, 20, 34, 37, 48] is featured by accelerating LLM decoding while precisely main-
taining the model’s output distribution. As the speed of auto-regressive decoding process is mainly bound by the
time for loading model weights and KV cache to GPU SRAM, speculative decoding leverages the observation
that generating one token takes the same time of processing tens of tokens in parallel. Tree-based speculation
methods are proposed to fully utilize the speculated budget [2, 10, 21]. Instead of making one prediction for
the next token, tree-based methods leverage multiple candidates to boost the acceptance rate so that more
tokens can get accepted [4, 6, 27, 38].

2.2 KV Cache Eviction Strategies

StreamingLLM [44] addresses the limitations of window attention and sliding window with re-computation
by presenting a straightforward yet effective method that allows LLMs to handle infinitely long text sequences
without fine-tuning. StreamingLLM stabilizes the performance by retaining critical attention sink tokens

3

52

KV Cache Bottleneck

(a) (b) (c)

Figure 2: (a) A continuously increasing natural divergence between the draft model with StreamingLLM
or Sliding-window with Re-computation and Llama2-7B-128K is witnessed as the sequence length increases,
indicating a falling acceptance rate for speculative decoding with longer contexts. Additionally, temperature
sensitivity signals a lack of robustness. (b) Compared with model weights, KV cache gradually becomes another
bottleneck with long contexts. (c) KV cache occupies most of the memory as the context length increases.

to eviction-based methods such as StreamingLLM and H2O. We further demonstrated its effectiveness and
robustness on different datasets.

• In Section 4.2, we propose a hierarchical system to address the dual memory bottlenecks. Using a lightweight
model paired with a StreamingLLM cache for initial speculations, we can reduce the drafting latency for
the subsequent speculation stage, thereby accelerating end-to-end inference.

Empirically, in Section 5, we perform extensive experiments and ablation studies to demonstrate the effectiveness
of TriForce. We show that TriForce achieves up to 2.31⇥ speedup for Llama2-7B-128K on a single A100
GPU on top of Hugging Face [41] with CUDA graphs [28]. For the offloading setting, TriForce attains an
impressive 7.78⇥ on two RTX 4090 GPUs, reaching 0.108 s/token—only half as slow as the auto-regressive
baseline on an A100. TriForce can efficiently serve a Llama2-13B with 128K contexts with 0.226s/token,
which is 7.94⇥ faster than a highly optimized offloading system. Further, we show that: (i) TriForce has
a theoretical 13.1⇥ upper bound, demonstrating exceptional scalability when dealing with long contexts; (ii)
TriForce is robust across various temperature settings, maintaining an acceptance rate above 0.9 even for a
temperature of 1.0; and (iii) TriForce’s ability to efficiently process large batches, consistently outperforming
the small model with StreamingLLM cache across all configurations, achieving a 1.9⇥ speedup for a batch size
of six, where each sample consists of 19K contexts.

2 Background

2.1 Speculative Decoding

Speculative decoding [5, 13, 17, 20, 34, 37, 48] is featured by accelerating LLM decoding while precisely main-
taining the model’s output distribution. As the speed of auto-regressive decoding process is mainly bound by the
time for loading model weights and KV cache to GPU SRAM, speculative decoding leverages the observation
that generating one token takes the same time of processing tens of tokens in parallel. Tree-based speculation
methods are proposed to fully utilize the speculated budget [2, 10, 21]. Instead of making one prediction for
the next token, tree-based methods leverage multiple candidates to boost the acceptance rate so that more
tokens can get accepted [4, 6, 27, 38].

2.2 KV Cache Eviction Strategies

StreamingLLM [44] addresses the limitations of window attention and sliding window with re-computation
by presenting a straightforward yet effective method that allows LLMs to handle infinitely long text sequences
without fine-tuning. StreamingLLM stabilizes the performance by retaining critical attention sink tokens

3

53

Sparsity for Smaller Cache Size

Observation: although densely trained, LLMs
• attention score matrices are highly sparse,

with a sparsity over 95% in almost all layers
• leads to 20× potential KV cache reduction
• maintains same accuracy

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.
(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.

5454

Target Models with Compressed KV as Their Own Drafts

5555

Better KV Compression: Retrieval-based

Figure 3b demonstrates that utilizing only 1K tokens could theoretically achieve a 97.6% acceptance rate
with Top-K selection method. While this scenario represents an optimal theoretical upper bound, practical
implementations like H2O and StreamingLLM exhibit promising results, achieving over 90.5% acceptance
rates with 1K KV cache budget. It should be noted that we maintain a full cache for the initial two layers for
illustration purposes, while no layers are skipped in our practical system implementation for efficiency.

3.2 Exploiting Contextual Locality for Drafting Efficiency

Observation Our exploration reveals that the information from long context tokens needed by adjacent
tokens tends to be similar. In our experiments, with the context length established at 120K, we instruct the
model to generate 256 tokens. By choosing the top-4K indices according to the attention score of the last
prefilled token, we use these indices to gather the attention scores for the subsequently generated tokens and
assess the score’s recovery rate for the initially prefilled 120K tokens. As shown in Figure 3c, it leads to high
recovery across almost all layers and a slowly decreasing trend as the number of tokens increases.

Insights This observation allows for a single construction of the cache to suffice for multiple decoding steps,
thereby amortizing the latency of constructing draft cache and boosting efficiency. As new KV cache are
introduced, guided by the understanding that recent words are more strongly correlated with the tokens currently
being decoded, these entries will replace the less significant ones. Cache re-building operations can be scheduled
at regular intervals or adaptively in response to a drop in the acceptance rate, which ensures that the cache
remains dynamically aligned with the evolving context. Notably, both StreamingLLM and H2O incorporate
this principle implicitly. H2O consistently retains tokens with high scores, and StreamingLLM reuses extensive
local information and sink tokens, which both reduce the necessity for complete cache reconstruction.

4 TriForce
This section aims to introduce the TriForce, which leverages a retrieval-based KV cache selection policy
and a hierarchical speculation system. We first argue that our retrieval-based drafting approach is intuitive
and lossless compared to existing strategies such as StreamingLLM and H2O. Subsequently, we introduce the
hierarchical system designed to effectively address the dual bottlenecks in speculative decoding, facilitating
a substantial improvement in overall speed-up. Finally, TriForce is elaborated in Section 4.3.

4.1 Retrieval-based Drafting

ulativespeccontext

Value

Query

0.3 0.1 0.5 0.1

The new system for long

Key

Chunk Size

Figure 4: Retrieval-based Drafting

In scenarios requiring long-term contextual dependencies, meth-
ods like StreamingLLM and H2O underperform due to their
cache updating strategies, which are ineffective at accurately re-
trieving detailed contextual information because they inevitably
and irrecoverably discard KV pairs. In our experiment, we
challenge StreamingLLM and H2O with a needle retrieval task
[22, 23, 30]. As detailed in Table 1, there is a notable drop
in their acceptance rates compared to their performance on
the PG-19 dataset, highlighting their limitations. Essentially,
StreamingLLM and H2O operate on a lossy principle, as evicted
tokens are permanently discarded, making them a poor fit for settings requiring the preservation of full KV
cache for the target model.

The necessity of keeping the entire KV cache in our settings allows us to select KV cache more freely [36].
This insight leads us to develop a more effective selection policy for lossless approximations. In our approach,
demonstrated in Figure 4, KV cache is segmented into small chunks. During the retrieval phase, we calculate
the attention between a given query and the average key cache within each chunk. This method effectively
highlights the most relevant chunks, enabling us to gather KV cache with a fixed budget based on the scores.
As illustrated in Table 1, retrieval-based method excels by actively identifying the most crucial information for
the task rather than relying on passive and time-based cache management methods. By focusing on relevance
over recency, retrieval-based policy demonstrates its potential to handle contextually dense datasets.

5

(a) (b) (c)

Figure 3: (a) The Llama2-7B-128K model demonstrates significant attention sparsity with a 120K context.
Apart from the first two layers, the rest exhibit significant sparsity. (b) We can utilize partial KV cache and
whole model weights to perform self-speculation. High acceptance rates are attainable using existing methods
with a limited budget. (c) A notable degree of locality is observed in most layers, which gradually diminishes as
context evolves.

together with recent KV for attention computation. By prioritizing sink tokens, StreamingLLM ensures the
attention score distribution remains stable, promoting consistent language modeling for long texts.

H2O [50] introduces a greedy but low-cost approach to processing infinite-length input streams, inspired
by a simplified version of the heavy-hitters (H2) eviction policy. This method dynamically updates the KV
cache based on the cumulative attention scores, systematically removing the least critical KV to maintain a
fixed cache size. By leveraging a greedy algorithm based on local statistics, H2O effectively selects which KV
pairs to preserve in the cache, ensuring efficient inference without compromising quality.

However, it is important to recognize that these techniques do not increase the context window size
[11, 15, 16, 49]. They focus on retaining only the most recent tokens along with either attention sinks or
heavy-hitters, while discarding other tokens. These approaches limit the model to processing based on their
designed eviction policies and recent tokens. Consequently, they might not be directly applicable to tasks that
demand comprehensive, long-context understanding.

2.3 KV Cache Quantization

Several approaches to KV cache quantization have been introduced to enhance the efficiency of inference for
long sequence generation, aiming to maintain generation quality while reducing the memory consumption
[14, 24, 35, 43, 47, 52]. Quantization methods focus on compressing the bit width of KV cache activations,
which is orthogonal to our approach.

3 Observation

Our design of TriForce is inspired by two critical empirical observations regarding LLMs when dealing with
long contexts, detailed as follows.

3.1 Leveraging Attention Sparsity for Speculative Decoding

Observation The phenomenon of attention sparsity in pre-trained LLMs has been discovered by numerous
studies [25, 26, 44, 50]. In our study, we conduct zero-shot inference on the PG-19 test set [32] with Llama2-
7B-128K model. By visualizing the sparsity across different attention heads, demonstrated in Figure 3a, we
observe that with a context length of 120K, it is possible to recover over 96% of the attention score with merely
4K tokens across almost all layers.

Analysis The presence of sparsity within the attention blocks suggests that a fraction of KV cache could
serve as a draft cache to attain a high acceptance rate during self-speculative decoding. Since KV cache is
the bottleneck under this setting, we can load whole model weights with partial KV cache as a draft model.

4

Contextual Locality for Drafting Efficiency

5757

TriForce: Two Stage Speculation

Draft 68m + Constant KV ------> Draft 7B + Constant KV ------> 7B+128K

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

Serve Llama2-7B 128K 2.2X on A100

58

Table 2: On-chip results (A100): We indicate the average acceptance rate in parentheses alongside the
speedup factor. T means sampling temperature. In the A100 on-chip experiments, with a prompt length of
122K, and a generation length of 256, we evaluate TriForce against the JF68M model with StreamingLLM
cache (Naive Policy). The results clearly demonstrate that TriForce significantly surpasses its performance.

Method T Speedup Naive Policy

TriForce 0.0 2.31⇥ (0.9234) 1.56⇥ (0.4649)
TriForce 0.2 2.25⇥ (0.9203) 1.54⇥ (0.4452)
TriForce 0.4 2.20⇥ (0.9142) 1.47⇥ (0.4256)
TriForce 0.6 2.19⇥ (0.9137) 1.42⇥ (0.4036)
TriForce 0.8 2.08⇥ (0.8986) 1.34⇥ (0.3131)
TriForce 1.0 2.08⇥ (0.9004) 1.29⇥ (0.2872)
TriForce 1.2 2.02⇥ (0.8902) 1.27⇥ (0.2664)

Retrieval w/o Hierarchy 0.6 1.80⇥ (0.9126) -
StreamingLLM w/ Hierarchy 0.6 1.90⇥ (0.8745) -

Table 3: Offloading results (RTX 4090 GPUs): We present latency comparison between TriForce and
Auto-regressive (AR) baseline for various models on different GPU setups. The sampling temperature is set to
0.6. The results indicate that TriForce achieves significant speedups across a range of models and hardware
configurations.

GPUs Target Model TriForce (ms) AR (ms) Speedup

2⇥ RTX 4090s Llama2-7B-128K 108 840 7.78⇥
2⇥ RTX 4090s LWM-Text-Chat-128K 114 840 7.37⇥
2⇥ RTX 4090s Llama2-13B-128K 226 1794 7.94⇥
1⇥ RTX 4090 Llama2-7B-128K 312 2434 7.80⇥
1⇥ RTX 4090 LWM-Text-Chat-128K 314 2434 7.75⇥

configured to a prompt length of 122K for on-chip settings and 127K for offloading settings, and aiming for a
generation of 256 tokens. The performance of TriForce is analyzed across various hardware configurations,
including on-chip experiments on an A100, and offloading experiments on RTX 4090 GPUs.

NaivePolicy. Since it is hard to train a draftmodelwith long contexts, we consider JF68Mwith StreamingLLM
cache as a naive policy approach, and its budget is set to 1K. Additionally, we experiment with various
temperatures to test its robustness.

Figure 5: TriForce’s excellent
scalability with longer contexts

Main Results. We evaluate TriForce using different temperatures, as
depicted in Table 2. We observe that TriForce reaches up to 2.31⇥ speedup
for the on-chip setting with a minimal 4K KV cache budget for Llama2-7B-
128K. For offloading settings, we provide end-to-end results on consumer GPUs
for more models, including Llama2-7B-128K, Llama2-13B-128K, and LWM-
Text-Chat-128K. Remarkably, in Table 3 we demonstrate that TriForce
can efficiently serve a Llama2-13B with 128K contexts on two RTX 4090
GPUs, reaching an average time between tokens as low as 0.226 seconds,
which is 7.94⇥ faster than a highly optimized offloading system. Furthermore,
with TriForce, Llama2-7B-128K can be served with 0.108s/token—only
half as slow as the auto-regressive baseline on an A100. We also illustrate
how TriForce boosts the efficiency of batched inference, a more frequently
employed setting in real-world model serving. TriForce achieves 1.9⇥ for a
batch size of six, with each sample in the batch having 19K contexts, which is
demonstrated in Table 4.

8

Serve Llama2-7B 0.3s / token Latency on an RTX4090

59

Table 2: On-chip results (A100): We indicate the average acceptance rate in parentheses alongside the
speedup factor. T means sampling temperature. In the A100 on-chip experiments, with a prompt length of
122K, and a generation length of 256, we evaluate TriForce against the JF68M model with StreamingLLM
cache (Naive Policy). The results clearly demonstrate that TriForce significantly surpasses its performance.

Method T Speedup Naive Policy

TriForce 0.0 2.31⇥ (0.9234) 1.56⇥ (0.4649)
TriForce 0.2 2.25⇥ (0.9203) 1.54⇥ (0.4452)
TriForce 0.4 2.20⇥ (0.9142) 1.47⇥ (0.4256)
TriForce 0.6 2.19⇥ (0.9137) 1.42⇥ (0.4036)
TriForce 0.8 2.08⇥ (0.8986) 1.34⇥ (0.3131)
TriForce 1.0 2.08⇥ (0.9004) 1.29⇥ (0.2872)
TriForce 1.2 2.02⇥ (0.8902) 1.27⇥ (0.2664)

Retrieval w/o Hierarchy 0.6 1.80⇥ (0.9126) -
StreamingLLM w/ Hierarchy 0.6 1.90⇥ (0.8745) -

Table 3: Offloading results (RTX 4090 GPUs): We present latency comparison between TriForce and
Auto-regressive (AR) baseline for various models on different GPU setups. The sampling temperature is set to
0.6. The results indicate that TriForce achieves significant speedups across a range of models and hardware
configurations.

GPUs Target Model TriForce (ms) AR (ms) Speedup

2⇥ RTX 4090s Llama2-7B-128K 108 840 7.78⇥
2⇥ RTX 4090s LWM-Text-Chat-128K 114 840 7.37⇥
2⇥ RTX 4090s Llama2-13B-128K 226 1794 7.94⇥
1⇥ RTX 4090 Llama2-7B-128K 312 2434 7.80⇥
1⇥ RTX 4090 LWM-Text-Chat-128K 314 2434 7.75⇥

configured to a prompt length of 122K for on-chip settings and 127K for offloading settings, and aiming for a
generation of 256 tokens. The performance of TriForce is analyzed across various hardware configurations,
including on-chip experiments on an A100, and offloading experiments on RTX 4090 GPUs.

NaivePolicy. Since it is hard to train a draftmodelwith long contexts, we consider JF68Mwith StreamingLLM
cache as a naive policy approach, and its budget is set to 1K. Additionally, we experiment with various
temperatures to test its robustness.

Figure 5: TriForce’s excellent
scalability with longer contexts

Main Results. We evaluate TriForce using different temperatures, as
depicted in Table 2. We observe that TriForce reaches up to 2.31⇥ speedup
for the on-chip setting with a minimal 4K KV cache budget for Llama2-7B-
128K. For offloading settings, we provide end-to-end results on consumer GPUs
for more models, including Llama2-7B-128K, Llama2-13B-128K, and LWM-
Text-Chat-128K. Remarkably, in Table 3 we demonstrate that TriForce
can efficiently serve a Llama2-13B with 128K contexts on two RTX 4090
GPUs, reaching an average time between tokens as low as 0.226 seconds,
which is 7.94⇥ faster than a highly optimized offloading system. Furthermore,
with TriForce, Llama2-7B-128K can be served with 0.108s/token—only
half as slow as the auto-regressive baseline on an A100. We also illustrate
how TriForce boosts the efficiency of batched inference, a more frequently
employed setting in real-world model serving. TriForce achieves 1.9⇥ for a
batch size of six, with each sample in the batch having 19K contexts, which is
demonstrated in Table 4.

8

Table 4: Batching results (A100): TriForce showcases its exceptional capability in efficiently handling
large batch sizes, consistently exceeding the performance of the JF68M model with StreamingLLM cache across
all configurations for Llama2-7B-128K.

Batch Budget T Speedup Naive Policy

(2,56K) (2,1024) 0.0 1.89⇥ 1.46⇥
(2,56K) (2,1024) 0.6 1.75⇥ 1.35⇥
(6,19K) (6,768) 0.0 1.90⇥ 1.39⇥
(6,19K) (6,768) 0.6 1.76⇥ 1.28⇥
(10,12K) (10,768) 0.0 1.72⇥ 1.34⇥
(10,12K) (10,768) 0.6 1.61⇥ 1.21⇥

Analysis. (1) Effectiveness: TriForce’s integration of the hierarchical system significantly enhances speedup,
with TriForce showing marked improvements over both the StreamingLLM method and retrieval method
without the hierarchical system. (2) Scalability: As depicted in Figure 5, TriForce demonstrates excellent
scalability with longer context lengths. This scalability is attributed to its high acceptance rate and the growing
gap between the draft and the target model’s latencies. Theoretically, TriForce could achieve a speedup of up
to 13.1⇥, 7 times higher than the naive policy, underscoring its significant scaling potential. (3) Robustness:
Unlike vanilla speculative decoding methods, TriForce maintains relatively consistent performance across
various temperature settings. It exhibits less temperature sensitivity, maintaining an acceptance rate above 0.9
even when the temperature is set to 1.0, highlighting its stability and reliability.

5.2 Ablation Results

We present extensive ablation studies of TriForce, focusing on three key points: (1) the influence of different
KV cache budgets, (2) the impact of chunk size selection, and (3) TriForce’s compatibility with tree-based
speculative decoding.

5.2.1 KV Cache Budget

As illustrated in Figure 6a, for Llama2-7B-128K, there is a notable rise in the acceptance rate as the cache
budget is increased to 4K, beyond which the rate starts to plateau, moving towards 1.0 gradually. This pattern
indicates that while increasing the cache size up to a certain point can improve the acceptance rate, any further
expansion beyond 4K may lead to diminishing benefits due to the increased latency of drafting. Consequently,
setting the KV cache budget at 4K emerges as the most effective strategy for TriForce, ensuring a balance
between achieving a high acceptance rate and minimizing additional drafting overhead.

5.2.2 KV Cache Chunk Size

Since we utilized contextual locality to reuse the constructed retrieval cache, we need to examine how the
choice of KV cache chunk size affects performance. Figure 6b shows that smaller chunk sizes may become too
specialized, overfitting on a single token at the expense of generalization for future tokens, especially given the
high attention sparsity in our methodology. Meanwhile, selecting chunk sizes that are too large can lead to
the risk of high-score tokens being neutralized by surrounding lower-score tokens, with the risk of a lack of
differentiation among chunks. Such a strategy also limits our selection flexibility, constraining the diversity
achievable within a fixed KV cache budget. For example, we are only allowed to select two chunks when the
chunk size is set to 2K with 4K budget.

5.2.3 Compatibility with Tree-based Speculative Decoding

Tree-based speculative decoding methods [4, 6, 27, 38] leverage multiple candidates to enhance the acceptance
rate so that more tokens can be accepted. We explore the possibility of integrating TriForce with tree-based
speculative decoding. Specifically, for Llama2-7B-128K on an A100, we estimate the theoretical number
of generated tokens when TriForce is combined with tree structures, including Sequoia and Independent

9

Larger Batch Size

Ablation Studies

61

(a) (b) (c)

Figure 6: (a) Analyzing speedup and acceptance rates across varying KV cache budgets revealed that a 4K
budget is the optimal selection, balancing between acceptance rates and the overhead of drafting. (b) For
4K KV cache budget, it indicates that excessively small chunk sizes might overfit individual tokens, whereas
overly large chunk sizes could constrain our diversity in selection. (c) TriForce is compatible with tree-based
speculations such as Sequoia and Independent Sequences, enhancing the theoretical average number of tokens
generated per decoding step of the target model by employing larger speculation budgets.

Sequences [6]. As depicted in Figure 6c, combining TriForce with tree-based speculation can potentially
improve the overall end-to-end speedup by utilizing additional speculation budgets.

6 Conclusion

In this work, we introduced TriForce, a hierarchical speculative decoding system aimed at significantly
enhancing the efficiency of serving LLMs with long contexts. Leveraging insights from attention sparsity and
contextual locality, TriForce mitigates the dual bottlenecks associated with KV cache and model weights.
Our empirical experiments demonstrate TriForce’s remarkable performance, including a notable speedup
of up to 2.31⇥ on A100 GPUs and an extraordinary 7.78⇥ in offloading scenarios on two RTX 4090 GPUs,
achieving 0.108s/token—only half as slow as the auto-regressive baseline on an A100. Additionally, it attains a
1.9⇥ speedup with large batches. These achievements illustrate TriForce’s potential to revolutionize the
serving of long-context models for long sequence generation.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding. arXiv
preprint arXiv:2402.05109, 2024.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

[4] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

[5] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318,
2023.

10

• Optimal KV Cache Budget
• Optimal Chunk Size for Locality
• Compatibility with Sequoia

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

Sequoia (new 🔥) TriForce (coming soon🔥)

• Serve a Llama2-70B on a single RTX-4090 with
0.57s / token latency, 9× faster than
DeepSpeed-Zero Offloading

• Serve a Llama2-7B, Llama2-13B, and Vicuna-
33B on an A100 by 4.04×, 3.73×, and 2.27×

TriForce: Long Context Speculative
 Decoding

Hanshi Sun

Mar 13, 2024• Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8×
faster than DeepSpeed-Zero Offloading

• 2.3× speedup on a single A100 GPU

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

Retrieval Cache

Full KV Cache

Llama2-7B-128K + Partial Cache

16GB, 14ms

Llama2-7B-128K + Full Cache

78GB, 56ms

Target Model

Target Model

Draft Model

Llama-68M + StreamingLLM Cache

150MB, 0.45ms

Speculation Phase 1: !% = 2

dec
dec oding with significantly
dec oding significantly enh acaes the
dec oding significantly enh ances the quality model

[token]: context tokens
[token]: accepted tokens
[token]: rejected tokens
[token]: tokens sampled from verification phase

Return: dec oding significantly enh ances the inference

Draft !! steps repeatedly
to generate ≥ !" tokens:
#!, #", … , ## 	 ((≥ !")

Speculation Phase 2: !& = 6

dec
dec oding significantly enh ances the model inference

Further verify
#!, #", … , ##

ulativespeccontextA system for long

Figure 1: Left: TriForce employs retrieval-based drafting and hierarchical speculation to effectively address
the dual bottlenecks. It integrates two models and three caches, comprising a draft model, a target model, and
a StreamingLLM cache for the draft model, alongside a retrieval cache and a full cache for the target model.
The process initiates by repeatedly drafting for �1 steps, assisting the target model with retrieved partial KV
cache in generating over �2 tokens, which will be further verified by the target model using full KV cache.
Right: Evaluating the Llama2-7B-128K on a needle retrieval task indicates that KV cache eviction-based
methods, such as StreamingLLM, require a trade-off between latency and accuracy. In contrast, our TriForce
successfully maintains low latency without sacrificing accuracy.

long sequence generation faces several challenges. First, training draft models to match the context length of
target LLMs requires massive computation and it remains questionable whether these small models can achieve
the same accuracy with a context length around 1M [3, 30, 45]. Second, we found that draft models with
existing training-free methods (e.g., KV cache eviction strategies) can result in poor speculating performance.
A continuously increasing divergence is witnessed as the sequence length increases, as shown in Figure 2a.

In pursuit of lossless acceleration, we utilize the lossless feature of speculative decoding as the foundation of
our system. An ideal speculative decoding algorithm should (i) be training-free, (ii) maintain a high acceptance
rate with long contexts, and (iii) have low-cost drafting. However, two technical challenges need to be addressed
to achieve the goal. First, it is not immediately apparent what we can use for low-latency drafting without
training a smaller draft model to match the long context length. Second, the key factors for attaining a high
acceptance rate with long contexts remain unclear.

Thanks to our preliminary exploration, three key observations pave the way for designing an applicable
system for serving LLMs with long contexts.

Hierarchical Speculation for Dual Memory Bottlenecks: As illustrated in Figures 2b and 2c, we recognize
two memory bottlenecks: model weights and KV cache, and the latter gradually becomes the dominant
bottleneck as context length increases. This inspires us to apply hierarchical speculation to tackle the two
bottlenecks sequentially by different draft models.

Leveraging Attention Sparsity for Speculative Decoding : We identify considerable redundancy within KV
cache, finding that a relatively small portion of it is sufficient to achieve a high acceptance rate by using partial
KV cache as a draft cache for self-speculation.

Exploiting Contextual Locality for Drafting Efficiency : We discover that the information from long context
tokens needed by adjacent tokens tends to be similar. This observation suggests that a specific segment of the
cache can be effectively reused across multiple decoding steps, amortizing the overhead of constructing draft
cache and enhancing drafting efficiency.

Building on these insights, we introduce a hierarchical speculation approach. For a long-context target
model (e.g., Llama2-7B-128K [30]), we leverage the original model weights but only with a small proportion
(e.g., 3%) of KV cache as a draft to tackle the bottleneck of KV cache. Hierarchically, the draft model is further
speculated by a lightweight model (e.g., Llama-68M) with StreamingLLM cache to address the bottleneck of
model weights. We present TriForce, depicted in Figure 1, a scalable and robust speculative decoding system
that integrates retrieval-based drafting and hierarchical speculation, optimized for both on-chip and offloading
scenarios. Specifically,

• In Section 4.1, by maintaining the full cache, we gain the flexibility to select KV pairs, allowing us to
devise a superior KV cache selection method, termed Retrieval-based Drafting. This strategy retrieves
required context information for future needs, which is characterized as lossless, particularly in comparison

2

Thanks You!

Q&A

