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LLMs are Powerful, but Very Expensive to Deploy
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Major Challenges: memory IO (Pope et al.)
* large mem, e.g. a Llama2-70B model needs
= 140 GB for parameters,
= 160 GB for activation (KV cache ),
even with Multi-Group-Attention (8K seqlen + 64 batch size)
* low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
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Exponential model size




Load model Cache KV

Load model love \ Cache KV

Load model love randomized \C'ache KV

Load model love randomized algorithms




We need to design more efficient algorithms for LLM inference!




Sequoia (new &)
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Serve a Llama2-70B on a single RTX-4090 with
0.57s / token latency, 9% faster than
DeepSpeed-Zero Offloading

Serve a Llama2-7B, Llama2-13B, and Vicuna-
33B on an A100 by 4.04x, 3.73%, and 2.27x
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Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8%
faster than DeepSpeed-Zero Offloading

2.3x speedup on a single A100 GPU




Sequoia (new &)
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Background: Transformer Architecture

Attention MLP
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Background: Transformer Architecture

Attention

MLP

A = softmax(QK") VvV
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Exponential model size




Background: Transformer Architecture

Attention MLP
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Existing Approaches and Challenges

The idea of to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
 (Chenetal 2023, Leviathan et al 2023, Specinfer, SpecTr, ...)
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Existing Approaches and Challenges

The idea of to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
 (Chenetal 2023, Leviathan et al 2023, Specinfer, SpecTr, ...)

But hard to consistently and drastically speed up LLM Inference
* token tree construction algorithms do not scale with larger speculation budget
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Existing Approaches and Challenges

The idea of to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
 (Chenetal 2023, Leviathan et al 2023, Specinfer, SpecTr, ...)

But hard to consistently and drastically speed up LLM Inference
* token tree construction algorithms do not scale with larger speculation budget
* token tree sampling and verification algorithms are not robust across different
hyperparameter configuration

Sequoia's Robustness
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Existing Approaches and Challenges

The idea of to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!
 (Chenetal 2023, Leviathan et al 2023, Specinfer, SpecTr, ...)

But hard to consistently and drastically speed up LLM Inference
* token tree construction algorithms do not scale with larger speculation budget
* token tree sampling and verification algorithms are not robust across different
hyperparameter configuration Sequoia's Hardware Awareness
* Frameworks are not hardware-aware
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Existing Approaches and Challenges

The idea of to accelerate LLM inference while preserving the LLM’s
output distribution has been widely studied!

 (Chenetal 2023, Leviathan et al 2023, Specinfer, SpecTr, ...)

But hard to consistently and drastically speed up LLM Inference
* token tree construction algorithms do not scale with larger speculation budget
* token tree sampling and verification algorithms are not robust across different
hyperparameter configuration
* Frameworks are not hardware-aware

How can we design an optimal tree-based speculative decoding method to maximize
speedups on modern hardware?



: Optimal Tree Construction

Sequoia tree construction algorithm: (1) formulate it as a
(2) use to solve this problem optimally and efficiently.

Maximize the expected number of tokens F (T) generated by
verifying a token tree T, under a constraint on the size of T.

t20

algorithm
Intuition: . cang o tso
We should not expand all the branches with machine . SVS:T design
translation model

the same probability because they usually
have very different chance being accepted!

problem,



Scalable: Optimal Tree Construction

Sequoia tree construction algorithm: (1) formulate it as a constrained optimization problem,
(2) use dynamic programming to solve this problem optimally and efficiently.

19



: Sampling without Replacement

Sequoia sampling and verification algorithm: sample replacement from the
draft model.

Sequoia's Robustness

Intuition: o
(i) Low-temperature, sample with replacement 825
will likely to sample the same token. If being 0.0
rejected, budgets wasted! " iy

Top-k sampling

Acceptance Rate %
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w o

(ii) High-temperature, top-k sampling will have
little chance getting exactly the same token as
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Hardware-aware: Tree Optimizer

Sequoia hardware-aware tree optimizer: search for optimal tree shape and depth.

Intuition: Turning point is different for different

model size and hardware.
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Sequoia's Hardware Awareness
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Sequoia: 9X DeepSpeed-Zero-Inference on RTX4090

GPU Bandwidth(GB/s) Target Draft TBT(s) Baseline(s)
Model Model

4090 31.5 Llama2- 0.57 4.54
70B

4090 31.5 Vicuna- 0.35 1.78
33B

4090 31.5 Llama2- 0.17 0.95
22B

4090 31.5 InternLM- 0.17 0.77
20B

4090 31.5 Llama2- TinyLlama- 0.09 0.27
13B 1.1B

2080Ti 15.8 Vicuna- TinyVicuna-  0.87 4.81
33B 1B

2080Ti 15.8 Llama2- TinyLlama-  0.53 3.04
22B 1.1B

2080Ti 15.8 Llama2- TinyLlama-  0.34 1.53
13B 1.1B

Sequoia, a speculative decoding framework that mitigates the gap in the
memory hierarchy, adapts to any draft/target pairs and any Al accelerators.



Sequoia: 4.04x Speed up for Llama-7B on A100

Target LLM | Draft Model | T Dataset (T;zg,izlgijﬁj Speedup Sp(;cjrglfer Speécgrglfer
Llama2-7B | JF68M 0 C4 (128,10) 4.04 x(5.08) | 3.45%(3.96) | 3.70x(4.11)
Llama2-7B | JFGSM 0.6 C4 (128,7) 3.18x(3.92) | 2.47x(2.97) | 2.45%(3.05)
Llama2-7B JF68M 0 | OpenWebText (128,7) 3.22x(3.86) | 2.79x(3.15) | 2.96%(3.24)
Llama2-7B | JF68M 0.6 | OpenWebText (128,6) 2.71x(3.33) | 2.10x(2.54) | 2.08%(2.55)
Llama2-7B | JF68M 0 | CNN Daily (128,7) 3.41%(4.05) | 2.95%(3.27) | 3.10x(3.37)
Llama2-7B JF68M 0.6 CNN Daily (128,6) 2.83x(3.45) | 2.11x(2.58) | 2.22x(2.69)
Llama2-13B | JF68M 0 C4 (64,9) 3.73x(4.20) | 3.30x(3.64) | 3.10x(3.75)
Llama2-13B | JFGSM 0.6 C4 (64,7) 3.19x(3.57) | 2.48x(2.87) | 2.42x(3.00)
Llama2-13B JF68M 0 | OpenWebText (64,7) 3.18x(3.49) | 2.77x(3.05) | 2.59%(3.14)
Llama2-13B | JF68M 0.6 | OpenWebText (64,6) 2.77%(3.06) | 2.17x(2.49) | 2.01x(2.52)
Llama2-13B | JF68M 0 | CNN Daily (64,7) 3.33%(3.68) | 2.95x(3.22) | 2.75%(3.32)
Llama2-13B | JF68M 0.6 | CNN Daily (64,6) 2.88x(3.17) | 2.17x(2.54) | 2.09% (2.60)
Llama2-13B | JF160M 0 C4 (64,7) 3.10% (4.69) | 2.74x(4.33) | 2.58x (4.42)
Llama2-13B | JF160M 0.6 C4 (64,6) 2.83%(4.06) | 2.07x(3.46) | 2.02x(3.53)
Llama2-13B JF160M 0 | OpenWebText (64,6) 2.72x(3.90) | 2.26x(3.58) | 2.15x(3.66)
Llama2-13B | JF160M 0.6 | OpenWebText (64,5) 2.49%(3.38) | 1.80x(2.96) | 1.77x(3.07)
Llama2-13B | JF160M 0 | CNN Daily (64,6) 2.84x(4.05) | 2.36x(3.73) | 2.25%(3.83)
Llama2-13B | JF160M 0.6 | CNN Daily (64,5) 2.55%(3.47) | 1.79%(2.97) | 1.74x(3.03)
Vicuna-33B | SL1.3B 0 C4 (64,6) 2.27x(4.28) | 1.83%(3.86) | 1.73x(3.96)
Vicuna-33B | SL1.3B 0.6 C4 (64,6) 2.19%(4.16) | 1.64x(3.53) | 1.52x(3.56)
Vicuna-33B SL1.3B 0 | OpenWebText (64,5) 2.21x(3.93) | 1.75%(3.70) | 1.65x(3.79)
Vicuna-33B SL1.3B 0.6 | OpenWebText (64,5) 2.13x(3.82) | 1.57%(3.36) | 1.47x(3.43)
Vicuna-33B | SL1.3B 0 | CNN Daily (64,5 2.21%(3.93) | L.75x(3.71) | 1.65%(3.79)
Vicuna-33B | SL1.3B 0.6 | CNN Daily (64,5) 2.16x(3.86) | 1.58x(3.40) | 1.46x(3.43)

Sequoia demonstrates impressive on-chip performance --
up for Llama2-7B on A100.

up-to 4.04x speed-



Demo

(1lm) root@5112070c89al:/Sequoia/tests#

bash run_offloading.sh

Loading checkpoint shards: 100%|f§| 15/15
Loading checkpoint shards: 100%|f| 2/2 [
768

Loading data from dataset/mt_bench. jsonl

0%| | /4 [00:00<?, ?it/s]
[INST]Compose an engaging travel blog po
st about a recent trip to Hawaii, highli
ghting cultural experiences and musi-see
attractions.[/INST]

ASSISTANT: Generatlng

10.2 tokens/step

(1lm) root@5112070c89al:/Sequoia/tests#
bash run_baseline.sh

Loading checkpoint shards: 100%|j}| 15/15
Loading data from dataset/mt_bench. jsonl

0%]| | o/4 [00:00<?, ?it/s]
[INST]Compose an engaging travel blog po
st about a recent trip to Hawaii, highli
ghting cultural experiences and must-see
attractions.[/INST]

ASSISTANT:

Generating

1 token/step




But how about long-context generation?



TriForce (coming soon®¥)

Draft y, steps repeatedly
to generate > y, tokens:
[x1, %2, 0, xn] (0 272)

Draft Model

Further verify
[x1, %2, e, %0 ]
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Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8%
faster than DeepSpeed-Zero Offloading

2.3x speedup on a single A100 GPU




Load model Cache KV

Load model love \ Cache KV

Load model love randomized \C'ache KV

Load model love randomized algorithms




Background: Transformer Architecture

Attention

A = softmax(QK") Vv

28



KV Cache Bottleneck

KV states for context or previously
generated tokens will be cached

Q Love to avoid re-computation.
Randomized
Algorithms
\O & X
o, O\
K cache ,b(\@o 3

KV cache size scales linearly with sequence length and batch size.

29



KV Cache Bottleneck

o
o

0.6

KV Cache to Total Ratio
=
AN

I
N

0.0

1K

Llama-7B (bsz=1)
Llama-7B (bsz=4)
Orion-14B (bsz=1)
Orion-14B (bsz=4)

2K

4K 8K 16K 32K 64K 128K
Context Length
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Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!

But hard to adapt to generation:
 Reduce quadratic attention but not KV cache size
= e.g., FlashAttention, Reformer
* Result high cache miss rates and degrade accuracy
" e.g., Sparse Transformer
* Expensive eviction policy
= e.g., Gisting Tokens

Static Sparsity (Strided)

An ideal cache has a small cache size, a low miss rate, and a low-cost eviction policy.

31



Sparsity for Smaller Cache Size

1001
2 Observation: although densely trained, LLMs
g " e attention score matrices are highly sparse,
N ) . . .
S with a sparsity over 95% in almost all layers
5 70- * l|eads to 20x potential KV cache reduction
< OPT-308 * maintains same accuracy
OPT-13B
60 -
—— OPT-6.7B
0 10 20 30 40 50

Layer Index

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.



Heavy-Hitters for Low Miss Rate

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

le5 le6

1.41
5
. 1.2 1 2.0 S
Q n
£ 1.0 “ g
2 \ 152
o 0.8 1 3}
: 2
50.6- 1.05
o) =
1 0.4 =
S AT F0.5 £
0.2 g
<
0.09 - 0.0

0 10000 20000 30000 40000 50000
Word Index

Key Observation: a small set of tokens are important along the generation
e accumulated attention scores of all the tokens follow a power-law distribution

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.
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Heavy-Hitters for Low Miss Rate

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

le5 le6

1.4 -
2 901 - [ Baseline
% 129 A 2.0 g 80 - EZA w.o. Heavy Hitter
5] nn
= 1.5°5 S -
Q 08 T ‘ 8 = /
5 < 5 60 - .
= S /
5] = Q 4
2 0.4 3 < ;j — g g
O o L0.5 € 40 / [/
0.2 =~ 5 // ‘ ‘ /// A
' ¢ 11 KA /
< 3011 [ ¢ A
0.0] - 0.0 i ‘ a g %
0 10000 20000 30000 40000 50000 20 CdPA OpenBlookQA Pi(I)A RTE
Word Index

Key Observation: a small set of tokens are important along the generation
e accumulated attention scores of all the tokens follow a power-law distribution
* masking heavy-hitter tokens degrades model quality



Greedy Algorithm for Low-cost Policy

Challenge: how to deploy such algorithm without access to the full attention?

OpenBookQA MathQA

Static Sparsity w. Hy O

PiQA [{ | coPA

RTE ~“Winogrande

® - Baseline o= H>0O w. Global Statistic
==o— H>0O w. Local Statistic Local

Idea: local greedy algorithm
e sum up the attention scores of the previous tokens every decoding step
* Add local / recent tokens
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H,O: Heavy Hitter Oracle

Value

Z 1.43 1.52 % 0.9

0.03)0.

Children | laughed and played in
Value T
I o -I
! 0.1 0.1 0.6
| 1
Decoding Step 4 Query
m e mmmmm e —m— ==,
Children | laughed and played in the J- sunny J- park I . 1 ecoe
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H,O: 3-29X Throughput and 1.9X Latency

XSUM, LLaMA-7B XSUM, LLaMA-13B XSUM, LLaMA-30B
H 6] e — | owof
12 = S R (S S 2]
% A100 FlexGen H,0
12 60
&N @ o %5 Heavy-Hitter Oracle
5 8 B 8 Pacal Throughput (token/s) 494 918 (1.9X)
o ¢ o | 8 - Fy
& 44 —*— Heavy-Hitter Oracle =8 ~de—  Heavy-Hitter Oracle | 30 = Late nc (S) 99 5 3 (1 9X)
I,ocul' \ 4 | OC.’I" ‘ 20 y )
21 == Full 21 w==s Full 3 10
] T T T 0 . ]
100 R0 60 40 20 0 100 hil) 60 40 20 0 100 X0 o0 40 20 0
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
Hugging Face Deep Speed FlexGen H,O
Throughput (T4) token/s 0.6 0.6 8.5 18.83 (3-29X)

e compatible with quantization
* generate sentences with fewer repeated words and more creativity
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Model Input

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

LLaMA-7B Full Cache
Output

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that/he began to cry.|The patrons were so moved that they
began to cry} and the musician was so

LLaMA-7B Local 20% Cache
Output

He (CCCCCCCCCCCCG D), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

LLaMA-7B H>O 20% Cache
Output

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

39



What are these heavy hitters?



Phenomenon: Attention Sink

Layer 0 Head 0 Layer 1 Head 0 Layer 2 Head 0 Layer 9 Head 0 Layer 16 Head 0 I
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Average attention logits in Llama-2-7B over 256 sentences

First few tokens!

* Observation: large attention scores are given to initial tokens, even if they're not semantically significant.
* Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis. 41



Understanding Attention Sinks

e SoftMax operation's role in creating attention sinks — attention scores have to
sum up to one for all contextual tokens. (SoftMax-Off-by-One, Miller et al. 2023)

* Initial tokens' advantage in becoming sinks due to their visibility to subsequent
tokens, rooted in autoregressive language modeling.

* The model learns a bias towards their absolute position Llama-2-13B PPL (})
rather than the semantics are crucial. 0+1024 (window) ~ 5158.07
4+1024 5.40
4"\n”+1020 5.6

StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.



Understanding Attention Sinks

 Pre-train with a Dedicated Attention Sink Token

2.8

— Vanilla
4 1 SinkqToken Cache Config  0+1024 1+1023 2+1022 4+1020
2 Vanilla 27.87 1849 18.05 18.05
526 Zero Sink 29214 19.90 1827 18.01
" Learnable Sink 1235 18.01 18.01 18.02
23

0 20 40 60 80 100 120 140
k Steps

e Similar Phenomenon in Darcet et al. Vision transformers need registers

Without registers With registers
Input DeiT-111 CLIP DINOv2 DeiT-111 CLIP DINOv2

*, S SRR
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StreamingLLM

(¢) Sliding Window

(a) Dense Attention (b) Window Attention w/ Re-computation

(d) StreamingLLLLM (ours)

previous tokens

k ~
Attention Sink

Current Token &
m B T

I - [T

are truncated o
<4—— T cached tokens —» T-L evicted L cached <L re-computed_ evicted L cached
tokens tokens tokens tokens tokens
O(THx PPL:5641x  O(TL)v PPL:5158x  O(TL?*)x PPL:5.43v O(TL)v PPL:5.40v
Has poor efficiency and Breaks when initial Has to re-compute cache Can perform efficient and stable
performance on long text. tokens are evicted. for each incoming token. language modeling on long texts.

StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis. 44



Infinite Streaming Ability

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
* Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: 1 2 3 4 5 6 7 8 Test: 1 2 3 4 5 6 7 8 2?2 ?

Opportunity with StreamingLLM:

Train: 1 2 3 4 5 6 7 8 Test: 1 2 3 4 x x 5 6 7 8



Stably Model up to 4 Million Tokens

Llama-2 (StreamingLLM)

Falcon (StreamingLLM)

1.5
— Falcon-7B
—— Falcon-40B
0.5oM 1M oM 3M aM

Input Length

Pythia (StreamingLLM)
1.5 -
% %
Q. Q 1.5
o (o) :
° — Llama-2-7B | © —— Pythia-2.8B
—— Llama-2-13B —— Pythia-6.9B
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22X Faster than Sliding Window Recomputation

o Llama-2-7B Pythia-12B
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“__ ~ ButStreamingLLM will forget the middle contents?




StreamingH20: Infinite Streaming Ability

Similar position squeezing can be deployed on H20

Traint 1 2 3 4 5 6 7 8 Test: 1 x 2 x 3 4 5 6 7 8
10-Document Question Answering Summarization Task Streaming with H2O to 4 Million Tokens
[ StreamLLM-4-508 0.25 4 [ StreamlLLM-4-252 3.0 1
40 - ZZ StreamLLM-256-256 EZE H20-128-128
EZA H20-256-256 254
0.20 -
2 307 =3 2.0
3 ?:l’o 0.15 -
2 04 ] g z 1.5 1
i = % 0.10
1.0 1
10 0.05 -
0.5 1
T T T 0.00 T T T T T
1th 2nd 3rd XSUM CNN-DailyMail 0 M M M aM

Answer Locations Input Length



Existing Approaches and Challenges

But it is hard to know what we loose ...
What if we compressed very important info?

How about speculative decoding?
But training very long-context draft model sounds like a painful job ...

1.0 ik ®)
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10 20 30 40 50 60
Latency (ms)



How about KV Compression + Speculative Decoding!
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Sliding-window JF68M and Llama2-7B-128K (T=0.6)
0.475 Sliding-window JF68M and Llama2-7B-128K (T=0.8)

StreamingLLM JF68M and Llama2-7B-128K (T=0.6)

StreamingLLM JF68M and Llama2-7B-128K (T=0.8)
0.450

128 512 2048 8192 32768
Context Length



KV Cache Bottleneck

GPU HBM
= N W A g N ®
o o & o © o6& o o

o

KV Cache
Model Weights

4K 8K 16K 32K 64K
Context Length

128K

o
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KV Cache to Total Ratio
©
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o
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1K
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2K
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Sparsity for Smaller Cache Size

1001
2 Observation: although densely trained, LLMs
g " e attention score matrices are highly sparse,
N ) . . .
S with a sparsity over 95% in almost all layers
5 70- * l|eads to 20x potential KV cache reduction
< OPT-308 * maintains same accuracy
OPT-13B
60 -
—— OPT-6.7B
0 10 20 30 40 50

Layer Index

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.



Target Models with Compressed KV as Their Own Drafts
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Better KV Compression: Retrieval-based

The new systemE for long | context spec uIativeE
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Contextual Locality for Drafting Efficiency
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TriForce: Two Stage Speculation

[token]: context tokens E ’ A ‘system‘ for ‘ long ‘context‘ spec Iulative ‘
[token]: accepted tokens i

[token]: rejected tokens

[token]: tokens sampled from verification phase

Draft y; steps repeatedly
to generate > y, tokens:

[xlixZ'""xn] (Tl ZVZ) g @ ’

dec

dec oding with significantly

dec oding significantly enh acaes the

dec oding significantly enh ances the guality model

Speculation Phase 1: y; = 2

150MB, 0.45ms Draft Model

Further verify
[xli xZP ey xn ]

Target Model @

Speculation Phase 2: y, = 6

16GB, 14ms Retrieval Cache &
ol R
dec
Target Model @ dec oding significantly enh ances the medel inference
78GB, 56ms

Full KV Cache Q

Return: dec oding significantly enh ances the inference

Draft 68m + Constant KV ------ > Draft 7B + Constant KV ------ > 7B+128K
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Serve Llama2-7B 128K 2.2X on A100

Method T Speedup Naive Policy
TRIFORCE 0.0 2.31x (0.9234) 1.56x (0.4649)
TRIFORCE 0.2 2.25x (0.9203) 1.54x (0.4452)
TRIFORCE 0.4 2.20x (0.9142) 1.47x (0.4256)
TRIFORCE 0.6 2.19x (0.9137) 1.42x (0.4036)
TRIFORCE 0.8 2.08x (0.8986) 1.34x (0.3131)
TRIFORCE 1.0 2.08x (0.9004) 1.29x (0.2872)
TRIFORCE 1.2 2.02x (0.8902) 1.27x (0.2664)
Retrieval w/o Hierarchy 0.6 1.80x (0.9126) -

StreamingLLM w/ Hierarchy 0.6

1.90x (0.8745)




Serve Llama2-7B 0.3s / token Latency on an RTX4090

GPUs Target Model TRIFORCE (ms) AR (ms) Speedup
2x RTX 4090s Llama2-7B-128K 108 840 7.78X%
2x RTX 4090s LWM-Text-Chat-128K 114 840 7.37X%
2x RTX 4090s Llama2-13B-128K 226 1794 7.94%
1x RTX 4090 Llama2-7B-128K 312 2434 7.80%

I1x RTX 4090 LWM-Text-Chat-128K 314 2434 7.75%




Larger Batch Size

Batch Budget T = Speedup Naive Policy

(2,56K)  (2,1024) 0.0 1.89x 1.46 %
(2,56K)  (2,1024) 0.6 1.75x 1.35x
(6,19K)  (6,768) 0.0 1.90x 1.39x
(6,19K)  (6,768) 0.6 1.76x 1.28x
(10,12K)  (10,768) 0.0 1.72x 1.34x
(10,12K)  (10,768) 0.6 1.61x 1.21x




Ablation Studies
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* Optimal KV Cache Budget
* Optimal Chunk Size for Locality
* Compatibility with Sequoia



TriForce (coming soon®¥)

Draft y, steps repeatedly
to generate > y, tokens:
[x1, %2, 0, xn] (0 272)

Draft Model

Further verify
[x1, %2, e, %0 ]

o
o

Target Model @)
Retrieval Cache ,

Accuracy

o
IS

i\{ TriForce

Target Model @ @ Full Cache

Full KV Cache Q

o
)

=== StreamingLLM
—~o- H,0

0.0
10 20 30 40 50 60
Latency (ms)

Serve a Llama2-7B-128K (78GB mem) on a
single RTX-4090 with 0.3s / token latency, 8%
faster than DeepSpeed-Zero Offloading

2.3x speedup on a single A100 GPU




Thanks You!

Q&A



