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Go gle Q. In SLURM how can | restrict how many GPUs a user's jobs can use at most in a X (o) Q
specific job time range?

© Johns Hopkins University

https://jhpce.jhu.edu » knowledge-base > setting-a-time-li...

Setting a time limit for your SLURM job on JHPCE

Feb 13, 2024 — The default time limit for job execution on the shared and gpu partitions is set
to 1 day, ensuring that shorter tasks do not face unnecessary ...
Missing: restrict meost

UL Unix & Linux Stack Exchange

https://unix.stackexchange.com » questions » running-...

Running multiple SLURM jobs on the same GPU

Nov 25, 2022 — It will run jobs in parallel if you have multiple GPUs that can run the jobs,
otherwise it runs them in series as a GPU becomes available. | ...

1 answer - Top answer: You should use "Sharding" GRES (gres:shard) instead of gres:GPU, a...
Missing: range? | Show results with: range?

Slurm Documentation
https://slurm.schedmd.com » faq

Frequently Asked Questions - Slurm Workload Manager

Feb 12, 2024 — If jobs do not specify time limits, then all jobs will receive the same time limit
(that associated with the partition), and the ability to ...
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You

In SLURM how can | restrict how many GPUs a user's jobs can use at most in a specific job time
range?

ChatGPT

To restrict the number of GPUs a user's jobs can use at most within a specific job time range in a
SLURM environment, you will need to utilize SLURM's Quality of Service (QoS) and account
management features. This approach allows you to define limits on resource usage that apply to
users, accounts, or even specific jobs based on various criteria, including job time ranges. Here's a

step-by-step guide to setting up such restrictions:

1. Define or Update a Quality of Service (QoS)
First, you need to define a Quality of Service (QoS) that specifies the GPU usage limits. If a suitable

QoS already exists, you may update it instead.

To create a new QoS:

[(°) Copy code

sudo sacctmgr add gos name=gpu_limit maxtresperuser=gpu=X
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In SLURM how can | restrict how many GPUs a user's jobs can use at most in a specific job time
range?

ChatGPT

To restrict the number of GPUs a user's jobs can use at most within a specific job time range in a
SLURM environment, you will need to utilize SLURM's Quality of Service (QoS) and account
management features. This approach allows you to define limits on resource usage that apply to
users, accounts, or even specific jobs based on various criteria, including job time ranges. Here's a

step-by-step guide to setting up such restrictions:

1. Define or Update a Quality of Service (QoS)
First, you need to define a Quality of Service (QoS) that specifies the GPU usage limits. If a suitable

QoS already exists, you may update it instead.

To create a new QoS:

[(°) Copy code

sudo sacctmgr add gos name=gpu_limit maxtresperuser=gpu=X

User-friendly presentations
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Boost productivity
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You
Where can | find gluten-free sushi (gluten free soy sauce provided) in Princeton, NJ?

ChatGPT
One option to find gluten-free sushi in Princeton, NJ, is to try Ajihei Sushi, located at 11 Chambers

St, Princeton, NJ 08542. They offer a variety of sushi options and often accommodate dietary
restrictions. It's recommended to call them directly to inquire about their gluten-free options and if

they provide gluten-free soy sauce.

Another option is Sakura Japanese Sushi & Steak House, located at 4437 NJ-27, Princeton, NJ
08540. They typically offer a wide range of sushi options and may be able to accommodate
gluten-free requests. Again, it's best to call ahead and ask about their gluten-free options and soy

sauce availability.
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@ You
.

Where can | find gluten-free sushi (gluten free soy sauce provided) in Princeton, NJ?

ChatGPT

One option to find gluten-free sushi in Princeton, NJ, is to try Ajihei Sushi, located at 11 Chambers

St, Princeton, NJ 08542. They offer a variety of sushi options and often accommodate dietary

restrictions. It's recommended to call them directly to inquire about their gluten-free options and if

they provide gluten-free soy sauce. DO€S NoOt provide gluten-free soy sauce

Another option is Sakura Japanese Sushi & Steak House, located at 4437 NJ-27, Princeton, NJ Does not exist7'

08540. They typically offer a wide range of sushi options and may be able to accommodate
gluten-free requests. Again, it's best to call ahead and ask about their gluten-free options and soy

sauce availability.

“hallucination”
No references for users to verify
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How can we make LMs better information-seeking tools?

1. The ability to find and utilize reference materials

Document-augmented

workload manager
Version 23.11

ABOUT
OVERVIEW

RELEASE NOTES

USING
DOCUMENTATION

FAQ
PUBLICATIONS

INSTALLING
DOWNLOAD

RELATED SOFTWARE
INSTALLATION GUIDE

GETTING HELP
MAILING LISTS

SUPPORT AND TRAINING
TROUBLESHOOTING

ENHANCED BY Google

Documentation

NOTE: This documentation is for Slurm version 23.11.
Documentation for older versions of Slurm are distributed witt

Also see Tutorials and Publications and Presentations.

Slurm Users

Quick Start User Guide

Command/option Summary (two pages).

Man Pages

Rosetta Stone of Workload Managers

Job Array Support

Heterogeneous Job Support

CPU Management User and Administrator Guide

MPI and UPC Users Guide

Support for Multi-core/Multi-threaded Architectures

Multi-Cluster Operation

Profiling_ Using HDF5 User Guide

Job Exit Codes

Resource Binding

Specific Systems
« Cray User and Administrator Guide with Native Slurm
« Intel Knights Landing (KNL)_User and Administrator Guide

Q:In SLURM how can i restrict ...

LM
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1. The ability to find and utilize reference materials

Document-augmented Retrieval-augmented

SCHEDMD envaNceD Bv Google

Documentation

NOTE: This documentation is for Slurm version 23.11.
Documentation for older versions of Slurm are distributed witt

workload manager

Version 23.11 Also see Tutorials and Publications and Presentations.
ABOUT
OVERVIEW Slurm Users
RELEASEINOIES » Quick Start User Guide
USING » Command/option Summary (two pages)
¢ Man Pages

DOCUMENTATION

Rosetta Stone of Workload Managers
Job Array Support
Heterogeneous Job Support
CPU Management User and Administrator Guide
MPI and UPC Users Guide
Support for Multi-core/Multi-threaded Architectures
Multi-Cluster Operation
Profiling_ Using HDF5 User Guide
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« Intel Knights Landing (KNL)_User and Administrator Guide

FAQ

PUBLICATIONS

INSTALLING
DOWNLOAD

RELATED SOFTWARE

INSTALLATION GUIDE

TROUBLESHOOTING

Q:In SLURM how can i restrict ...

LM

Q v

yelp ’k Gluten Free Sushi (]

3219

9 Honda Of Prince

Restaurants v Home Servicel

Yelp > Restaurants > Gluten Free Sushi

Best Gluten Free Sushi near Pri

= Al Price v OpenNow | [ Offers Delivery

Gluten-Free Sushi Restaurants in Princeton, New

1. Hiro Asian E Jersey
nnnn( e Last updated March 2024

Asian Fusion Sushi B

Open until 10:30 PM

«»

Sort By Best Match
¢ “Hiro put together
during our...” mor

1. Elite Five Sushi & Grill
4 ratings

277 Witherspoon St, Princeton, NJ 08540

2. Elite Five Su $$ « Sushi Restaurant

0000 . 4« GF Menu

Steakhouses Sushi B GF menu options include: Sushi

X Outdoor seating v

Open until 9:30 PM 100% of 4 votes say it's celiac friendly

B Takes reservations

o iwholoveditte 2. Kawaii Tori Sushi

accommodating!!”

5 ratings
v Outdoor seating v 7 S Main St, Yardley, PA 19067

$$ - Sushi Restaurant
GF Menu
—‘ GF menu options include: Sushi, Beer, Soy Sauce

75% of 4 votes say it's celiac friendly

Q: Where can | find gluten-free sushi ...

LM
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How can we make LMs better information-seeking tools?

1. The ability to find and utilize reference materials
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Version 23.11
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RELEASE NOTES
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INSTALLING
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ENHANCED BY Google

Documentation

NOTE: This documentation is for Slurm version 23.11.
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Slurm Users

» Quick Start User Guide

« Command/option Summary (two pages)

¢ Man Pages

» Rosetta Stone of Workload Managers

« Job Array Support

« Heterogeneous Job Support

« CPU Management User and Administrator Guide

¢ MPI and UPC Users Guide

« Support for Multi-core/Multi-threaded Architectures

o Multi-Cluster Operation
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» Specific Systems
« Cray User and Administrator Guide with Native Slurm
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Retrieval-augmented

&

yelp ’k Gluten Free Sushi (]

Restaurants v Home Servicel

v

9 Honda Of Prince

@ Find Me Gluten Free Local Chains PREMIUM More ~

Yelp > Restaurants > Gluten Free Sushi b S
Best Gluten Free SushinearPri it =

en Now Offers Delivery

1. Hiro Asian E
Q000 +s
Asian Fusion  Sushi B
Open until 10:30 PM

¢ “Hiro put together
during our... " mor

L 2. Elite Five Su
EY A= 0000 o
Steakhouses SushiB
g H Open until 9:30 PM

B Takes reservations

R3] © “Allwho loved it/ E
accommodating!!”

v outdoor seating v

—

Q: Where can | find gluten-free sushi ...

Gluten-Free Sushi Restaurants in Princeton, New
Jersey

Last updated March 2024

Sort By Best Match

1. Elite Five Sushi & Grill
4 ratings
277 Witherspoon St, Princeton, NJ 08540
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi

100% of 4 votes say it's celiac friendly

2. Kawaii Tori Sushi
5 ratings
7 S Main St, Yardley, PA 19067
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi, Beer, Soy Sauce

75% of 4 votes say it's celiac friendly

LM

2. The ability to provide “citations”

Where can | find gluten-free sushi (gluten
free soy sauce provided) in Princeton, NJ?

'S Sources

Gluten-Free Sushi TOP 10 BEST Gluten Elite Five Sushi & Grill @ Y7)j
Restaurants in... Free Sushi near... Gluten-Free -...

@ findmeglutenfr.. -1 @) yelp - 2 @ findmeglutenf.. - 3  View 2 more

IEISJ Answer

You can find gluten-free sushi with gluten-free soy sauce provided in Princeton,
NJ at Elite Five Sushi & Grill. This restaurant offers gluten-free options, including
sushi, and is known for taking celiac allergies seriously, providing GF soy sauce,
and having knowledgeable staff about gluten-free entrees O .
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Challenge #1: the need for better retrieval/search

Traditional word-matching methods do not work well for :

“semantic search”

. BERT obtains new SoTA results

f QUETY - - oo e e e
. Pre-trained language models are great. z‘ ‘/ on 11 NLP tasks. (eviin et al,, 2019)
o

o
®
Dense retrieval becomes more and more popular o . -
O
e Represent sentences/paragraphs/documents as o *“co e o0
. o
vectors and perform nearest-neighbor search o
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Challenge #1: the need for better retrieval/search

SiImCSE: Simple Contrastive Learning of Sentence Embeddings "\F@E‘ %
EMNLP 2021 A E

e Propose asimple contrastive learning framework for sentence embeddings

Different hidden dropout mask

in two forward passes
)

[ Two dogs are running. }" —~QOX—

1\
/
|

A man surfing on the sea. | E Q2 |
/
A kid is on a skateboard. + *(C‘;?Y/
—/
5 Encoder

. — Positive instance
. —= Negative instance :
S 10
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Challenge #1: the need for better retrieval/search
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Enabling Large Language Models to Generate Text with Citations
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F\% [When did the US break away from England?

-Model output
The US took the first step towards gaining independence from

GB when it declared independence on July 2, 1776 (although the
event is now commemorated on July 4, 1776, the date when the

Declaration of Independence was officially adopted by Congress)
[1][2]. The Treaty of Paris was later signed on September 3, 1783,
formally separating the United States from the British Empire [3].
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We show that even GPT-4 lacks complete citation
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Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot imes even reaching iti with prior s f-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

“Equal contribution
"Johns Hopkins University, OpenAl

Author contributions listed at end of paper.

The GPT-3 paper
~T5K tokens



Language models: the new “search engines”

Challenge #3: how to fit the context

CHILDREN

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann™ Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray

Benjamin Chess Jack Clark Christopher Berner

L] 22 Jul 2020

Sam McCandlish Alec Radford Tlya Sutskever Dario Amodei

-

OpenAl

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot i even reaching iti with prior s f-th fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

2005.14165v4 [cs.C

arXiv

“Equal contribution = +
"Johns Hopkins University, OpenAl g

Author contributions listed at end of paper. FRANK-HERBERT FRANK HERBERT .. FRANK HERBERT

The GPT-3 paper The Dune series
~T5K tokens ~1M words



Language models: the new “search engines”

Challenge #3: how to fit the context

CHILDREN <> Code (©) Issues 784 19 Pullrequests 239  (» Actions [ Projects 25 C
Language Models are Few-Shot Learners ¥ transformers Public © Watch 11k ~ % Fork 24.2k
Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan!  PrafullaDhariwal  Arvind Neelakantan  PranavShyam  Girish Sastry ¥ main ~ )24 Q Go to file + <> Code ~
o Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
N
g Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
= 4 o . & aaronjimv [docs] Spanish tra.. @@ X 00c1d87 - 2 days ago ) 15,375 Commits
_3 Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
S Benjamin Chess Jack Clark Christopher Berner
=) Sam McCandlish Alec Radford Tiya Sutskever Dario Amodei A .circleci Add UDOP (#22940) 2 weeks ago
3
2 OpenAl | .github [CI] Quantization workflow (#29... 3 weeks ago
¥
l{)\‘ Abstract .
VA N .
— Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training ‘8 docker [Q uantizatio n] Quanto quantizer... 2 days ago
< on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
— in architecture, this method still requires task-specific fine-tuning datasets of thousands o tens of
v thousands of examples. By contrast, humans can generally perform a new language task from only - . .
o a few examples or from simple instructions — something which current NLP systems still largely | docs [docs] Spanish translation of att... 2 days ago
o struggle to do. Here we show that scaling up language models greatly improves task-agnostic, o
(q\] few-shot i even reaching it with prior s f-the fine-
5 tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
2 parameters, 10x more than any previous non-sparse language model, and test its performance in
> the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, | examples Rename glue to nyu-m11l/glue (... 2 days ago
- with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
< achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as -
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some _ model_cards Update URL for Hub PR docs (# 2 years ago
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding _ o
and of GPT-3 in general. . notebooks [Docs] Add missing language op... last month
“Equal contribution = . - : :
e oo University, OpenAl pet | scripts Update all references to canonic... last month
Author contributionslisted at end of paper. FRANK-HERBERT FRANK HERBERT o, HERBERT
— | srcltransformers Generate: replace breaks bv a lo... 2 davs aao

The GPT-3 paper The Dune series The Transformers package
~T5K tokens ~1M words ~10M tokens



Challenge #3: how to fit the context

Language models: the new “search engines”

L] 22 Jul 2020

-

arXiv:2005.14165v4 [cs.C

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann™ Nick Ryder* Melanie Subbiah*

Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tlya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot i even reaching iti with prior s f-th fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

“Equal contribution
"Johns Hopkins University, OpenAl

Author contributions listed at end of paper.

The GPT-3 paper

~T5K tokens

OD EMPEROR
0O  OF

|
FRANK-HERBERT
— S —

FRANK HERBERT

CHILDREN

+

. FRANK HERBERT

The Dune series
~1M words

<> Code (%) Issues 784

¥ transformers ' Public

¥ main ~ F O

& aaronjiimv [docs] Spanish tra...

.circleci

.github

docker

docs

examples

model_cards

notebooks

scripts

srcltransformers

19 Pullrequests 239  (») Actions

® Wwatch 11k ~

Go to file

-] X 00c1d87 - 2 days ago

Add UDOP (#22940)

[CI] Quantization workflow (#29...

[Quantization] Quanto quantizer...

[docs] Spanish translation of att...

Rename glue to nyu-ml1l/glue (...

Update URL for Hub PR docs (#...

[Docs] Add missing language op...

Update all references to canonic...

Generate: replace breaks bv a lo...

f Projects 25 C

% Fork 24.2k

- CXE

9 15,375 Commits

2 weeks ago
3 weeks ago
2 days ago
2 days ago
2 days ago
2 years ago
last month
last month

2 davs aao

The Transformers package
~10M tokens

yelp3¢

\4

3919

Gluten Free Sushi (<]

Restaurants Vv

Yelp > Restaurants > Gluten Free Sushi

Best Gluten Free Sushi near Pri

= Al

Price v

Home Service!

OpenNow | | Offers Delivery

1. Hiro Asian

X Outdoor seating

Open until 9:30 PM

Q@ “All who loved it!

Q000ac: +s

Asian Fusion SushiB
Open until 10:30 PM

¢ “Hiro put together
during our..."” mor

2. Elite Five Su
Q00a 40

Steakhouses SushiB

5 Takes reservations

E

accommodating!!”

' Outdoor seating

100

v

@ Honda Of Prince

Do _ e
@ Find Me Gluten Free Local Chains PREMIUM More ~

™~

Gluten-Free Sushi Restaurants in Princeton, New
Jersey

Last updated March 2024

Sort By Best Match

<«

1. Elite Five Sushi & Grill
4 ratings
277 Witherspoon St, Princeton, NJ 08540
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi

100% of 4 votes say it's celiac friendly

2. Kawaii Tori Sushi
5 ratings
7 S Main St, Yardley, PA 19067
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi, Beer, Soy Sauce

75% of 4 votes say it's celiac friendly

web pages

~100K tokens



Challenge #3: how to fit the context

Language models: the new “search engines”

L] 22 Jul 2020

-

arXiv:2005.14165v4 [cs.C

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann™ Nick Ryder* Melanie Subbiah*

Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tlya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot i even reaching iti with prior s f-th fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

“Equal contribution
"Johns Hopkins University, OpenAl

Author contributions listed at end of paper.

N\ Meta LLaMA-2: 4K

The GPT-3 paper

~T5K tokens

OD EMPEROR
0O  OF

|
FRANK-HERBERT
— S —

FRANK HERBERT

CHILDREN

+

. FRANK HERBERT

The Dune series
~1M words

<> Code (%) Issues 784

¥ transformers ' Public

¥ main ~ F O

& aaronjiimv [docs] Spanish tra...

.circleci

.github

docker

docs

examples

model_cards

notebooks

scripts

srcltransformers

19 Pullrequests 239  (») Actions

® Wwatch 11k ~

Go to file

-] X 00c1d87 - 2 days ago

Add UDOP (#22940)

[CI] Quantization workflow (#29...

[Quantization] Quanto quantizer...

[docs] Spanish translation of att...

Rename glue to nyu-ml1l/glue (...

Update URL for Hub PR docs (#...

[Docs] Add missing language op...

Update all references to canonic...

Generate: replace breaks bv a lo...

f Projects 25 C

% Fork 24.2k

- CXE

9 15,375 Commits

2 weeks ago
3 weeks ago
2 days ago
2 days ago
2 days ago
2 years ago
last month
last month

2 davs aao

The Transformers package
~10M tokens

yelp3¢

\4

3919

Gluten Free Sushi (<]

Restaurants Vv

Yelp > Restaurants > Gluten Free Sushi

Best Gluten Free Sushi near Pri

= Al

Price v

Home Service!

OpenNow | | Offers Delivery

1. Hiro Asian

X Outdoor seating

Open until 9:30 PM

Q@ “All who loved it!

Q000ac: +s

Asian Fusion SushiB
Open until 10:30 PM

¢ “Hiro put together
during our..."” mor

2. Elite Five Su
Q00a 40

Steakhouses SushiB

5 Takes reservations

E

accommodating!!”

' Outdoor seating

100

v

@ Honda Of Prince

Do _ e
@ Find Me Gluten Free Local Chains PREMIUM More ~

™~

Gluten-Free Sushi Restaurants in Princeton, New
Jersey

Last updated March 2024

Sort By Best Match

<«

1. Elite Five Sushi & Grill
4 ratings
277 Witherspoon St, Princeton, NJ 08540
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi

100% of 4 votes say it's celiac friendly

2. Kawaii Tori Sushi
5 ratings
7 S Main St, Yardley, PA 19067
$$ - Sushi Restaurant
GF Menu
GF menu options include: Sushi, Beer, Soy Sauce

75% of 4 votes say it's celiac friendly

web pages

~100K tokens



Challenge #3: how to fit the context

Language models: the new “search engines”

L] 22 Jul 2020

-

arXiv:2005.14165v4 [cs.C

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann™ Nick Ryder* Melanie Subbiah*

Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tlya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot i even reaching iti with prior s f-th fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.
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Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot i even reaching iti with prior s f-th fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
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Language models: the new “search engines”

Challenge #3: how to fit the context

We need long-context language models!
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Long-context hurdle #1: Transformers

Transformers are costly (both computation and memory)

Multi-head attention: the representation of every word is a
weighted sum of all previous words
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Vaswani et al., 2017. Attention is all you need.

' To encode a context of 77 words |
. O(n*) compute complexity

' To predict the next word
| O(n) memory complexity

l A 1M token context would cost |
| 164GB memory! :
(LLaMA-70B, FP16)
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High-quality long-context data are hard to find

Together. 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens,
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Long-context hurdle #3: Data scarcity

High-quality long-context data are hard to find

Average length of domains from RedPajama (a open-source pre-training data collection)
e Wikipedia: 0.5K tokens

e C4 (webpages): 0.5K tokens
o Arxiv: 20K tokens
e Books: 147K tokens

Average length of instruction-tuning/chat data: <1K tokens

How can we train a model that can continually generalize to longer length?
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Long-Context Language Modeling
with Parallel Context Encoding

e We propose @ CEPE: Context Expansion with Parallel Encoding

A lightweight framework that can extend any decoder-only LM’s context length
Why CEPE
Length generalization (train on 8K, generalize to 128K)
Efficiency (10x throughput, 1/256 memory for every extra token* compared to LLaMA-7B)
Low training cost (extending a LLaMA-7B can be done by 1 A100)
Also work for chat models

CEPE achieves great performance on both long-context and retrieval-augmented applications
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How does CEPE handle long context?

CHILDREN
OF

The Dune series

Additional context

e Can be processed by “chunks”

e Order does not matter much

Main input

e Should be processed with additional context

e Directly related to the generation
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Chapter 01: Dune ...

Chapter 02: Muad'dib ...

Chapter 03: “Yueh! Yueh!” ...

Additional context C

A pre-trained decoder (e.g., LLaMA)

( Feedforward )
(Selfatenton
(__ Feedoward )
( Self-attention )
________________________________ R

Who betrayed the Atreides? A:

Main input X

We use an existing decoder-only model (e.g., LLaMA-7B) to process the main input.
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Context Expansion with Parallel Encoding (CEPE)

A pre-trained decoder (e.g., LLaMA)

( Feedforward )
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We use a small bidirectional encoder (435M) to encode the additional context by chunks.
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A pre-trained decoder (e.g., LLaMA)

Much faster compared to the decoder ( Feedforward )

Bidirectional > better representation
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Each chunk has at most 256 tokens

We use a small bidirectional encoder (435M) to encode the additional context by chunks.
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Context Expansion with Parallel Encoding (CEPE)

A pre-trained decoder (e.g., LLaMA)
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All the encoder outputs are concatenated as the representation for the additional context.



Context Expansion with Parallel Encoding (CEPE)

A pre-trained decoder (e.g., LLaMA)

( Feedforward )
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We insert cross-attention into every layer of the decoder, which attends to the

additional context.



Context Expansion with Parallel Encoding (CEPE)

A pre-trained decoder (e.g., LLaMA)
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We freeze the decoder and only tune the small encoder and the cross-attention modules.
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The model does not generalize well beyond its training length

Su et al., 2021. RoFormer: Enhanced Transformer with Rotary Position Embedding.

Press et al., 2021. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.
Chen et al., 2023. Extending Context Window of Large Language Models via Positional Interpolation.

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context
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For the decoder-only model (assume trained on 4K length):

Dune. Chapter 01: ... Chapter 02: ... Chapter 03: ... Who betrayed the Atreides? A:

Position: 012 ... 4094 4095 4096 4097 ... 300,012 800,013 800,014 800,015 ...

The model does not generalize well beyond its training length

RoOPE embeddings can generalize infinitely in theory (Su et al., 2021)
... but the model does not perform well on beyond-training lengths (Press et al., 2021)

There exists positional interpolation methods (Chen et al., 2023)

... but good performance on long context still requires extensive training on the target length (Fu et al., 2024)
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Benefit #1: Length generalization

For CEPE

Chapter 01: Dune ... Chapter 02: Muad'dib ... Chapter 03: “Yueh! Yueh!” ... ... | Who betrayed the Atreides? A:

Position: 012 ... 254 255 | 012 .. 254 255 ‘ 012 .. 254 255 0123..

Each encoder chunk/the decoder window has its own positional encodings.
e Generalize to longer length > generalize to more chunks

e Trained on 16 chunks, CEPE can generalize to (at least) 128 chunks
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(__ ) Trainable () Frozen ( Feedforward )
---------------------------------------------------------------------- >( Cross-attention )
— ( Self-attention )
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[ Encoder ] [ Encoder j [ Encoder j ¢ Self-attention )
D D r r

Chapter 01: Dune ... Chapter 02: Muaddib ... Chapter 03: “Yueh! Yueh!” ... Who betrayed the Atreides? A:

Additional context C Main input X

We only fine-tune the encoder and the cross-attention - can fit on 1 80GB GPU
e Fine-tuning a 7B decoder - at least 4 80GB GPUs

We only fine-tune on 8K sequence length > generalize to 128K



Training data

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens.
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations.
Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.
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We use RedPajama (RP; Together, 2023). Domain  Avg#tokens

e Standard recipe: concatenate the documents to the Arxiv 16K
target length (RP-concat) - Book - 14K
e Good diversity . Ca(cleanweb) 05k
e Lack long-range dependency CC (web) 2K

e Length-filter recipe: long documents from - Github - 2K
Arxiv and Book (RP-fllter) StackExchange 0.5K
e Strong long-range dependency  Wikipedia 0.5K

.....................................................................................................................................................

o Lackdiversity Different domains from RP.

We use a 2:1 mixture of RP-filter and RP-concat,
a design choice echoing Together, 2023; Fu et al., 2024.

31



Training details

32



Encoder

Training details

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

32



Training details

Encoder
e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

32



Training details

Encoder
e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA
Training CEPE

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

e Decoderinput =4K tokens

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)
e Decoderinput =4K tokens

e Encoderinput=16 x 256 tokens

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)
e Decoderinput =4K tokens

e Encoderinput=16 x 256 tokens

Warmup

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)
e Decoderinput =4K tokens

e Encoderinput=16 x 256 tokens

Warmup

We first train the cross-attention to learn to copy

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)
e Decoderinput =4K tokens

e Encoderinput=16 x 256 tokens

Warmup

We first train the cross-attention to learn to copy

o We set the encoder and the decoder input to be the same (for 131M tokens)

32



Training details

Encoder

e Atrain-from-scratch 435M bidirectional encoder using masked language modeling

e Samevocabulary as LLaMA

Training CEPE

e We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)
e Decoderinput =4K tokens

e Encoderinput=16 x 256 tokens

Warmup

We first train the cross-attention to learn to copy

o We set the encoder and the decoder input to be the same (for 131M tokens)

32



CEPE for instruction-tuned models

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

e Most useful models are fine-tuned on chat-like data (often proprietary)

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

e Most useful models are fine-tuned on chat-like data (often proprietary)

Who is the president of the United States?
A: Donald Trump

Q: What are three scientific advancements?'
A: Airline travel, cars, and space travel

Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

e Most useful models are fine-tuned on chat-like data (often proprietary)

Who is the president of the United States?
A: Donald Trump

Q: What are three scientific advancements’?“
A: Airline travel, cars, and space travel

Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

e Most useful models are fine-tuned on chat-like data (often proprietary)

Who is the president of the United States?
A: Donald Trump
USER Who is the president of the United States?
Q: What are three scientific advancements?l
A: Airline travel, cars, and space travel
ASSISTANT As of my last update in April 2023, Joe Biden is the President of the United States.
Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning
e Most useful models are fine-tuned on chat-like data (often proprietary)

e How toturn a long-context LM to a long-context chat LM?

Who is the president of the United States?
A: Donald Trump

| USER Who is the president of the United States?
Q: What are three scientific advancements’?“
A: Airline travel, cars, and space travel

ASSISTANT As of my last update in April 2023, Joe Biden is the President of the United States.

Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning
e Most useful models are fine-tuned on chat-like data (often proprietary)
e How toturn along-context LM to a long-context chat LM?

e Tune achat LM on long-context data

Who is the president of the United States?
A: Donald Trump

| USER Who is the president of the United States?
Q: What are three scientific advancements?“
A: Airline travel, cars, and space travel

ASSISTANT As of my last update in April 2023, Joe Biden is the President of the United States.

Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning
e Most useful models are fine-tuned on chat-like data (often proprietary)
e How toturn along-context LM to a long-context chat LM?

e Tune achat LM on long-context data - lose chat abilities

Who is the president of the United States?
A: Donald Trump

| USER Who is the president of the United States?
Q: What are three scientific advancements?“
A: Airline travel, cars, and space travel

ASSISTANT As of my last update in April 2023, Joe Biden is the President of the United States.

Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning
e Most useful models are fine-tuned on chat-like data (often proprietary)
e How toturn along-context LM to a long-context chat LM?

e Tune achat LM on long-context data - lose chat abilities

e Tune along-context LM on chat data

Who is the president of the United States?
A: Donald Trump
USER Who is the president of the United States?
Q: What are three scientific advancements’?“
A: Airline travel, cars, and space travel
ASSISTANT As of my last update in April 2023, Joe Biden is the President of the United States.
Q: Where were the first humans found?
A: East Afrrica

Q: Where did humans emigrate to prior to finding the new world?
A: Asia

33



CEPE for instruction-tuned models

Instruction-tuning / chat-tuning
e Most useful models are fine-tuned on chat-like data (often proprietary)
e How toturn a long-context LM to a long-context chat LM?

e Tune achat LM on long-context data - lose chat abilities

e Tune along-context LM on chat data - no proprietary data; no long-context chat data
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CEPE for instruction-tuned models

CEPE-Distilled (CEPED)
e Useonly unsupervised long-context data, we can turn a chat model to a long-context model

e Add an auxiliary distillation loss to maintain the chat model’s chat ability
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CEPE-Distilled (CEPED)

Save logits of X

_____________________ Teacher ~ ... Student T .
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0 2 r r

Chapter 01: Dune ...
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Who betrayed the Atreides? A:

1. Run forward passes w/ the

original chat model

Additional context C

2. Run forward passes w/

the CEPE model

Main input X
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CEPE-Distilled (CEPED)

Save logits of X D (P || Q) = ngvP log( Q(:U) )
____________________ Teacher KL Divergence _Student T
(__ ) Trainable () Frozen ( Feedforward ) .
----------------------------------------------------------------------- ,_.> C Cross-attention )
— ( Self-attention )
Concatenate T
r | | I S
0000 INIRINiNIpiN IR NRiNN ( codiomar )|
T T T —>( Cross-attention ) |
[ Encoder j [ Encoder j [ Encoder j ( Self-attention ) l
T T T T
Chapter 01: Dune ... Chapter 02: Muaddib ... Chapter 03: “Yueh! Yueh!” ... Who betrayed the Atreides? A:
Additional context C Main input X
1. Run forward passes w/ the 2. Run forward passes w/ 3. Train with KL Divergence loss +
original chat model the CEPE model cross-entropy loss
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Evaluation

Long-context language modeling
Retrieval-augmented applications
In-context learning

Chat model evaluation
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Positional interpolation KV-cache dropping
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Evaluation - long-context language modeling

------ +- YaRN | StreamingLLM REPLUG —e— CEPE

Positional interpolation KV-cache dropping  Retrieval for long-context
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Evaluation - long-context language modeling

Books (Perplexity)
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Performance

CEPE continues to improve perplexity
with more context (only trained on 8K)
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Evaluation - long-context language modeling

Performance

CEPE continues to improve perplexity
with more context (only trained on 8K)

Memory
>200  Memory (GB) . CEPE maintains a low memory usage
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Evaluation - long-context language modeling

StreamingLLM

> 8 Inference Time (sec/seq)

6

4

2 R od
v
sé
0 L - —'lu"'_"'l.'!'./
2k 4k 8k 32K 128k
Context Size
REPLUG —eo— CEPE

Performance

CEPE continues to improve perplexity
with more context (only trained on 8K)

Memory
CEPE maintains a low memory usage
(1/6 of full attention)

Throughput
CEPE achieves the highest throughput
(10x of full attention)
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Open-domain question answering

Passage k: ...

Passage k-1: ...

Passage 1. ...

Question: Who is the lead actor of “Dune: Part Two”
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Evaluation - retrieval-augmented applications

Open-domain question answering
Retrieved from Wikipedia based on the question

¥ (using a dense retriever)
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Question: Who is the lead actor of “Dune: Part Two”
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Evaluation - retrieval-augmented applications

Open-domain question answering
Retrieved from Wikipedia based on the question

¥ (using a dense retriever)

Passage k: ...

Passage k-1: ...
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Question: Who is the lead actor of “Dune: Part Two”
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Evaluation - retrieval-augmented applications

Open-domain question answering
Retrieved from Wikipedia based on the question

¥ (using a dense retriever)

Passage k: ...

Passage k-1: ...

Passage 1. ...

Question: Who is the lead actor of “Dune: Part Two”

LM — Timothée Chalamet

45
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Evaluation - retrieval-augmented applications
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Evaluation - retrieval-augmented applications

NQ TriviaQA PopQA
34 o—o 62 72 ot |
O A Y T A R R L L)l
33 / ,\+ 34 \',!;v" _______ e
= / 60 “‘
2 . L .
LL] 3 . \%".’ 39 i \
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g \ Messssnsnnnannannnnns I I TL A L LT 23
4. ‘ - .p
30 ; 56 :
10 20 30 60 10 20 30 60 10 20 30 60
K K K
-4 LLaMA-2 = LLaMA-2-32K -#- REPLUG —e— CEPE

CEPE extrapolates well to more retrieved passages without getting distracted
(also more efficient)
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An “emerging” ability of large language models: in-context learning
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Evaluation — in-context learning

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

An “emerging” ability of large language models: in-context learning

47



Evaluation — in-context learning

Input: 2014-06-01 -

Translate English to French: task description Output: 106!10112014!
sea otter => loutre de mer examples Input: 200/-12-13 iN— text
Output: !1211312007! | [M-CONEX
peppermint => menthe poivrée Input: 2010-09-23 examples
plush girafe => girafe peluche Output: 109123120101 _
Input: 2005-07-23 test example
cheese => prompt Output: !6712312005!
I
« — — model completion

An “emerging” ability of large language models: in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners.
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.



Evaluation — in-context learning

Input: 2014-06-01 -

Translate English to French: task description Output: 106!10112014!
sea otter => loutre de mer examples Input: 200/-12-13 - text
Output: !1211312007! | !M-coniex
peppermint => menthe poivrée Input: 2010-09-23 examples
plush girafe => girafe peluche Output: 109123120101 _
Input: 2005-07-23 test example
cheese => prompt Output: !6712312005!
I
« — — model completion

An “emerging” ability of large language models: in-context learning

s the cross-attention good enough for using in-context examples?

Brown et al., 2020. Language Models are Few-Shot Learners.

Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.
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Evaluation — in-context learning
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+ CEPE 5 438
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Evaluation — in-context learning

#texamples in the decoder  #examples in the encoder

S

LLAMA-2 2

2+18
+ CEPE 5 438
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Evaluation — in-context learning

k SST2 MR AGNews SSTS TREC TREC-F DBPedia NLU-S NLU-I BANKING CLINIC
LLAMA-2 2 89.1 96.7 72.7 3.9 48.0 16.7 94.0 42.3 22.3 38.4 59.1
+ CEPE 2+18 90.7 984 71.9 46.7 47.1 22.8 94.0 48.9 30.4 42.5 62.4
2+38 929 98.0 73.2 45.5 47.5 235.1 93.3 48.8 31.6 46.0 62.8

CEPE can perform in-context learning using demonstrations in the encoder
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Evaluation — in-context learning

k SST2 MR AGNews SSTS TREC TREC-F DBPedia NLU-S NLU-I BANKING CLINIC
LLAMA-2 2 89.1 96.7 72.7 3.9 48.0 16.7 94.0 42.3 22.3 38.4 59.1
+ CEPE 2+18 90.7 984 71.9 46.7 47.1 22.8 94.0 48.9 30.4 42.5 62.4
2+38 929 98.0 73.2 45.5 47.5 235.1 93.3 48.8 31.6 46.0 62.8
LLAMA-2" 40 943 98.7 74.7 523  87.7 54.8 95.1 76.7 62.1 50.4 72.0

CEPE can perform in-context learning using demonstrations in the encoder

... though the performance still lags behind putting demonstrations in the decoder
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Evaluation — chat model evaluation

Question Answering Summarization

Total tokens NQA Qspr QALT GvRp SSFD QMSum
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Evaluation — chat model evaluation

Long context (books, government report, papers)
Zero-shot (no training; no in-context examples)

The model needs to understand “instructions”

t

Question Answering Summarization

Total tokens NQA Qspr QALT GvRp SSFD QMSum
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Evaluation — chat model evaluation

Question Answering Summarization
Total tokens NQA Qspr QALT GvRp SSFD QMSum
LLAMA-2-CHAT 2K
2K + 2K
+ CEPED 2K + 30K

2K + All

52



Evaluation — chat model evaluation

Tokens in the decoder

Question Answering Summarization
Total tokens NQA Qspr QALT GvRp SSFD QMSum
LLAMA-2-CHAT 2K
2K + 2K
+ CEPED 2K + 30K

2K + All

52



Evaluation — chat model evaluation

Tokens in the decoder Tokens in the encoder
7
Question Answering Summarization
Total tokens NQA Qspr QALT GvRp SSFD QMSum
LLAMA-2-CHAT 2K
2K + 2K
+ CEPED 2K + 30K

2K + All

52



Evaluation — chat model evaluation

Question Answering Summarization
Total tokens NQA Qspr QALT GvRp SSFD QMSum
LLAMA-2-CHAT 2K 17.1 14.6 28.6 16.0 16.4 19.3
2K + 2K 19.5  20.5 30.2 16.5 16.4 19.6
+ CEPED 2K + 30K 21.6 199 29.6 15.8 16.7 19.5
2K + All 219 1909 29.6 15.9 16.7 19.5

CEPE can utilize the long context and boost the QA/summarization performance
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Evaluation — chat model evaluation

Question Answering Summarization
Total tokens NQA Qspr QALT GvRp SSFD QMSum
LLAMA-2-CHAT 2K 17.1 14.6 28.6 16.0 16.4 19.3
2K + 2K 19.5  20.5 30.2 16.5 16.4 19.6
+ CEPED 2K + 30K 21.6 199 29.6 15.8 16.7 19.5
2K + All 219 199 29.6 15.9 16.7 19.5
LLAMA-2-32K INSTRUCT 32K 12.2  18.1 41.6 19.9 10.0 10.3

Compared to a full-attention decoder, CEPE’s performance is more stable across different tasks
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e CEPEis a lightweight framework for extending the context window of any decoder-only LMs
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e CEPE performs well on both long-context modeling and retrieval-augmented applications
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Conclusion

CEPE is a lightweight framework for extending the context window of any decoder-only LMs
CEPE is length-generalizable, efficient, and easy to train
CEPE performs well on both long-context modeling and retrieval-augmented applications

CEPE works well with instruction-tuned/chat models too (with only unlabeled data)

55
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What’s next

e Long-context instruction-tuning
e Reduce training cost

e Reduce inference cost
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What’s next

e Long-context instruction-tuning

e Reduce training cost

e Reduce inference cost

e Improve retrieval-augmented applications
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More passages encode more information to answer the question.

Gao et al., 2023. Enabling Large Language Models to Generate Text with Citations 58
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More passages encode more information to answer the question.

Can LLMs use them effectively?

Gao et al., 2023. Enabling Large Language Models to Generate Text with Citations 58



... Back to ALCE

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

ChatGPT-16K (max #tokens=16K)

ChatGPT (5-psg) 36.1
ChatGPT (10-psg) 36.7
ChatGPT (20-psg) 36.1

GPT-4 (max #tokens=8K)
GPT-4 (5-psg)
GPT-4 (10-psg)
GPT-4 (20-psg)
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e More passages do not lead to better performance
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ChatGPT-16K (max #tokens=16K)

ChatGPT (5-psg) 36.1
ChatGPT (10-psg) 36.7
ChatGPT (20-psg) 36.1

GPT-4 (max #tokens=8K)
GPT-4 (5-psg) 41.3
GPT-4 (10-psg) 43.1

GPT-4 (20-psg) 44 4

e More passages do not lead to better performance

e Astronger model utilizes the more information better
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Oracle (20-psg) >70
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e Astronger model utilizes the more information better
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... Back to ALCE

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec.

Prec.

ChatGPT-16K (max #tokens=16K)

ChatGPT (5-psg) 36.1
ChatGPT (10-psg) 36.7
ChatGPT (20-psg) 36.1

GPT-4 (max #tokens=8K)
GPT-4 (5-psg) 41.3
GPT-4 (10-psg) 43.1
GPT-4 (20-psg) 44 .4

Oracle (20-psg) >70

e More passages do not lead to better performance

e Astronger model utilizes the more information better

e LLMs are not good at synthesizing information
from long context
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... Back to ALCE

Improve LLMs’ ability to retrieve and synthesize
multiple pieces of information from long-context

60
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