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Too many irrelevant results
Word-matching does not return 
relevant webpages
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User-friendly presentations
Relevant answers
Boost productivity
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Does not provide gluten-free soy sauce

Does not exist?!

No references for users to verify
“hallucination”
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Challenge #1: the need for better retrieval/search

Pre-trained language models are great.
BERT obtains new SoTA results 
on 11 NLP tasks. (Devlin et al., 2019) 

Query

Traditional word-matching methods do not work well for
“semantic search”

Dense retrieval becomes more and more popular

• Represent sentences/paragraphs/documents as         
vectors and perform nearest-neighbor search
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Challenge #1: the need for better retrieval/search

SimCSE: Simple Contrastive Learning of Sentence Embeddings

• Propose a simple contrastive learning framework for sentence embeddings

• A technique used by SoTA embedding tools (OpenAI, 2022; Su et al., 2023; Muennighoff et al., 2024)

• Downloaded by >18M times (from HuggingFace)

OpenAI, 2022. Text and Code Embeddings by Contrastive Pre-Training. 
Su et al., 2023. One Embedder, Any Task: Instruction-Finetuned Text Embeddings. 
Muennighoff et al., 2024. Generative Representational Instruction Tuning.

EMNLP 2021
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Challenge #2: how to evaluate?

• There is no good evaluation for long text generation

• There is no automatic evaluation for generations with citations

Human evaluation? Slow, costly, unreliable
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ALCE: automatic LLM citation evaluation

• Given a question

• Given a corpus 

• Requires end-to-end systems to

• Retrieve passages from the corpus

• Generate long-text responses

• Cite supporting passages

Language models: the new “search engines”

12

Challenge #2: how to evaluate?

Enabling Large Language Models to Generate Text with Citations 
EMNLP 2023
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Challenge #2: how to evaluate?

ALCE automatically evaluates a long-text answer’s

• Fluency

• Correctness

• Citation quality
An example for correctness evaluation.

An example for citation evaluation

We show that even GPT-4 lacks complete citation 
support 50% of the times
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Challenge #3: how to fit the context

The GPT-3 paper 

(~75K tokens)

The Dune series 

(~1M words)

The Transformers package 

(~10M tokens) 

100 web pages 

(~100K tokens)

LLaMA-2: 4K Mixtral: 32K GPT-4: 128K

We need long-context language models!
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16

Transformers are costly (both computation and memory)

Vaswani et al., 2017. Attention is all you need. 

Multi-head attention: the representation of every word is a 
weighted sum of all previous words

To encode a context of  wordsn
 compute complexity𝒪(n2)

To predict the next word
 memory complexity𝒪(n)

A 1M token context would cost
164GB memory!
(LLaMA-70B, FP16)
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Long-context hurdle #3: Data scarcity

18

High-quality long-context data are hard to find

Average length of domains from RedPajama (a open-source pre-training data collection) 

• Wikipedia: 0.5K tokens 

• C4 (webpages): 0.5K tokens 

• Arxiv: 20K tokens 

• Books: 147K tokens 

Average length of instruction-tuning/chat data: <1K tokens

Together. 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens.

How can we train a model that can continually generalize to longer length?

https://www.together.ai/blog/redpajama
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• We propose 🍄CEPE: Context Expansion with Parallel Encoding

• A lightweight framework that can extend any decoder-only LM’s context length

• Why CEPE

• Length generalization (train on 8K, generalize to 128K)

• Efficiency (10x throughput, 1/256 memory for every extra token* compared to LLaMA-7B)

• Low training cost (extending a LLaMA-7B can be done by 1 A100)

• Also work for chat models

• CEPE achieves great performance on both long-context and retrieval-augmented applications
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How do decoder-only LMs handle long context?

The Dune series

Q: Who betrayed the Atreides?

Decoder-only language model

 memory cost𝒪(n)
 computational cost𝒪(n2)

 ~ 10K to 1Mn
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How does CEPE handle long context?

The Dune series

Q: Who betrayed the Atreides?

Additional context Main input

• Can be processed by “chunks” 

• Order does not matter much
• Should be processed with additional context 

• Directly related to the generation
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Context Expansion with Parallel Encoding (CEPE)

We use an existing decoder-only model (e.g., LLaMA-7B) to process the main input.
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Context Expansion with Parallel Encoding (CEPE)

We use a small bidirectional encoder (435M) to encode the additional context by chunks. 

Each chunk has at most 256 tokens

Much faster compared to the decoder 

Bidirectional → better representation
We keep the last layer’s output



24

Context Expansion with Parallel Encoding (CEPE)

All the encoder outputs are concatenated as the representation for the additional context. 
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Context Expansion with Parallel Encoding (CEPE)

We insert cross-attention into every layer of the decoder, which attends to the 

additional context.
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Context Expansion with Parallel Encoding (CEPE)

We freeze the decoder and only tune the small encoder and the cross-attention modules.
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The model does not generalize well beyond its training length
• RoPE embeddings can generalize infinitely in theory (Su et al., 2021)

• … but the model does not perform well on beyond-training lengths (Press et al., 2021)

• There exists positional interpolation methods (Chen et al., 2023)

• … but good performance on long context still requires extensive training on the target length (Fu et al., 2024) 

For the decoder-only model (assume trained on 4K length):

Su et al., 2021. RoFormer: Enhanced Transformer with Rotary Position Embedding. 
Press et al., 2021. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 
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Benefit #1: Length generalization

Each encoder chunk/the decoder window has its own positional encodings.

• Generalize to longer length → generalize to more chunks

• Trained on 16 chunks, CEPE can generalize to (at least) 128 chunks

For CEPE
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Benefit #2: Efficiency

Throughput

• Full attention: , 𝒪(m2)

• Attention by chunks: 𝒪(kc2), m = kc
• Using a small encoder to encode most context 

Memory

• Additional context:  tokens. Main input:  tokens.m n

• Decoder-only: 𝒪((m + n)Lddec)

• Ours: 𝒪(mdenc + nLddec)

• m ≫ n, ddec ≫ denc

#tokens

#chunks length of the chunk

#decoder layers
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Benefit #3: Low training cost

We only fine-tune the encoder and the cross-attention → can fit on 1 80GB GPU

• Fine-tuning a 7B decoder → at least 4 80GB GPUs

We only fine-tune on 8K sequence length → generalize to 128K



31

Training data

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.



31

Training data

We use RedPajama (RP; Together, 2023).

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

• Length-filter recipe: long documents from                  
Arxiv and Book (RP-filter)

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

• Length-filter recipe: long documents from                  
Arxiv and Book (RP-filter)

• Strong long-range dependency

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

• Length-filter recipe: long documents from                  
Arxiv and Book (RP-filter)

• Strong long-range dependency

• Lack diversity 

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

• Length-filter recipe: long documents from                  
Arxiv and Book (RP-filter)

• Strong long-range dependency

• Lack diversity 

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.

We use a 2:1 mixture of RP-filter and RP-concat,



31

Training data

We use RedPajama (RP; Together, 2023).

• Standard recipe: concatenate the documents to the 
target length (RP-concat)

• Good diversity

• Lack long-range dependency

• Length-filter recipe: long documents from                  
Arxiv and Book (RP-filter)

• Strong long-range dependency

• Lack diversity 

Together, 2023. RedPajama, a project to create leading open-source models, starts by reproducing LLaMA training dataset of over 1.2 trillion tokens. 
Together, 2023. Preparing for the era of 32K context: Early learnings and explorations. 

Fu et al., 2024. Data Engineering for Scaling Language Models to 128K Context.

Domain Avg #tokens

Arxiv 16K

Book 142K

C4 (clean web) 0.5K

CC (web) 2K

Github 2K

StackExchange 0.5K

Wikipedia 0.5K

Different domains from RP.

We use a 2:1 mixture of RP-filter and RP-concat,
a design choice echoing Together, 2023; Fu et al., 2024.



32

Training details



32

Training details

Encoder



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens

• Encoder input = 16 x 256 tokens



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens

• Encoder input = 16 x 256 tokens

Warmup



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens

• Encoder input = 16 x 256 tokens

Warmup
We first train the cross-attention to learn to copy



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens

• Encoder input = 16 x 256 tokens

Warmup
We first train the cross-attention to learn to copy

• We set the encoder and the decoder input to be the same (for 131M tokens)



32

Training details

Encoder

• A train-from-scratch 435M bidirectional encoder using masked language modeling 

• Same vocabulary as LLaMA

Training CEPE

• We train CEPE with LLaMA-2-7B for 20B tokens (1% of LLaMA-2’s pre-training budget)

• Decoder input = 4K tokens

• Encoder input = 16 x 256 tokens

Warmup
We first train the cross-attention to learn to copy

• We set the encoder and the decoder input to be the same (for 131M tokens)
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CEPE for instruction-tuned models

Instruction-tuning / chat-tuning

• Most useful models are fine-tuned on chat-like data (often proprietary)

• How to turn a long-context LM to a long-context chat LM?

• Tune a chat LM on long-context data

• Tune a long-context LM on chat data

→ lose chat abilities

→ no proprietary data; no long-context chat data
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CEPE for instruction-tuned models

CEPE-Distilled (CEPED)

• Use only unsupervised long-context data, we can turn a chat model to a long-context model

• Add an auxiliary distillation loss to maintain the chat model’s chat ability
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CEPE-Distilled (CEPED)

KL DivergenceTeacher

1. Run forward passes w/ the 

original chat model

3. Train with KL Divergence loss +  

cross-entropy loss

Student

2. Run forward passes w/ 

the CEPE model
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Evaluation

• Long-context language modeling 

• Retrieval-augmented applications 

• In-context learning 

• Chat model evaluation
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Evaluation - long-context language modeling

Positional interpolation KV-cache dropping Retrieval for long-context
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Evaluation - long-context language modeling

Performance 
CEPE continues to improve perplexity 
with more context (only trained on 8K)

Memory  
CEPE maintains a low memory usage 

(1/6 of full attention)

Throughput 
CEPE achieves the highest throughput  

(10x of full attention)
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Evaluation - retrieval-augmented applications

Open-domain question answering

Passage k: …  

Passage k-1: … 

… 

Passage 1: …  

Question: Who is the lead actor of “Dune: Part Two”

Retrieved from Wikipedia based on the question 

(using a dense retriever) 

LM  Timothée Chalamet
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Evaluation - retrieval-augmented applications

CEPE extrapolates well to more retrieved passages without getting distracted 
(also more efficient)



47

Evaluation — in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners. 
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.



47

Evaluation — in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners. 
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.

An “emerging” ability of large language models: in-context learning 



47

Evaluation — in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners. 
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.

An “emerging” ability of large language models: in-context learning 



47

Evaluation — in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners. 
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.

An “emerging” ability of large language models: in-context learning 



47

Evaluation — in-context learning

Brown et al., 2020. Language Models are Few-Shot Learners. 
Rong, 2021. Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious.

An “emerging” ability of large language models: in-context learning 

Is the cross-attention good enough for using in-context examples?
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Evaluation — in-context learning

CEPE can perform in-context learning using demonstrations in the encoder

… though the performance still lags behind putting demonstrations in the decoder
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Evaluation — chat model evaluation
Long context (books, government report, papers)

Zero-shot (no training; no in-context examples)

The model needs to understand “instructions”
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Evaluation — chat model evaluation

CEPE can utilize the long context and boost the QA/summarization performance
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Evaluation — chat model evaluation

Compared to a full-attention decoder, CEPE’s performance is more stable across different tasks
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Conclusion

• CEPE is a lightweight framework for extending the context window of any decoder-only LMs

• CEPE is length-generalizable, efficient, and easy to train

• CEPE performs well on both long-context modeling and retrieval-augmented applications

• CEPE works well with instruction-tuned/chat models too (with only unlabeled data)
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What’s next

• Long-context instruction-tuning

• Reduce training cost

• Reduce inference cost

• Improve retrieval-augmented applications
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Gao et al., 2023. Enabling Large Language Models to Generate Text with Citations

More passages encode more information to answer the question. 

Can LLMs use them effectively?
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… Back to ALCE

Gao et al., 2023. Enabling Large Language Models to Generate Text with Citations. Results are  reported on the ASQA subset

• More passages do not lead to better performance 

• A stronger model utilizes the more information better

• LLMs are not good at synthesizing information 
from long context

Oracle (20-psg) >70

Improve LLMs’ ability to retrieve and synthesize  
multiple pieces of information from long-context
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@gaotianyu1350 @princeton_nlp @PrincetonPLI


