
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Three Lessons Learned from ML Systems

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

1
4/3/24



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML Systems are a Key Ingredient in ML
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Challenges of Building ML Systems
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Increasingly diverse models

ML Model

Large Language Models
Transformers,
Vision Language Models, 
Graph Neural Networks, 
Mixture of Experts, 
Sparse NN, 
Dynamic NN, 
…

Increasingly heterogeneous hardware

CPUs, GPUs, TPUs,
AI accelerators,
FPGAs, CGRAs,
Programmable networks,
and their combinations
…
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CMU Automated Learning Systems Lab

Mission: Automate the design and optimization of ML systems by leveraging
1. Statistical and mathematical properties of ML algorithms
2. Domain knowledge of modern hardware platforms

4https://catalyst.cs.cmu.edu/



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

This Lecture:
Three Lessons Learned from Our MLSys Research
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ML Model

1. Automated approaches can offer 3-10x improvement for most tasks
2. Joint optimization is critical
3. Combing systems and ML optimizations is promising but challenging
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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Case Study 1:
TASO: Up to 3.1x

Case Study 2:
FlexFlow: Up to 10x
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Lesson 1: Automated Approaches Offer 3-10x Improvement

Case Study: Current Rule-based Graph Optimizations
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Lesson 1: Automated Approaches Offer 3-10x Improvement 8

Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Case Study:
Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)
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Recall: TASO Workflow
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1. Multi-linearity of conv
2. Distributivity of 
matmul over concat
…

* Lecture 8: Automated Graph Optimizations
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TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x
• Stronger correctness: formally verify all generated substitutions

10Lesson 1: Automated Approaches Offer 3-10x Improvement



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

End-to-end Inference Performance (Nvidia V100 GPU)
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Competitive on 
standard models

Larger speedups on
emerging models
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Lesson 1: Automated Approaches Offer 3-10x Improvement

12https://catalyst.cs.cmu.edu/
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Case Study 1:
TASO: Up to 3.1x

Case Study 2:
FlexFlow: Up to 10x
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Challenges of Parallelizing DNN Training
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Parallelization 
Strategy

Limitations:
- Hard to manually design and implement
- Suboptimal performance
- Limited portability

Lesson 1: Automated Approaches Offer 3-10x Improvement
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Hardware 
Topology

FlexFlow: Automatically Optimizing DNN Parallelization
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FlexFlow

DNN Model

Fast Parallel 
Strategy

Better Performance
Up to 10x faster than 

manually designed strategies  

No Manual Effort
Automatically find strategies for new 
DNN models or hardware platforms

Fast Deployment
Minutes of automated search to 
discover performant strategies 
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FlexFlow: Searching for Efficient Parallelization Strategies
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A search space of possible 
parallelization strategies

= Fast and Scalable 
Parallelization strategies

+ A cost model and 
a search algorithm
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The SOAP Search Space
• Samples
• Operators
• Attributes
• Parameters
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators
• Attributes
• Parameters

Parallelizing a 1D convolution in Sample
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes
• Parameters

Parallelizing multiple convolutions in Operator
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes: partitioning attributes in a sample (e.g., pixels)
• Parameters

Parallelizing a 1D convolution in Attribute
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes: partitioning attributes in a sample (e.g., pixels)
• Parameters

Attribute parallelism for CNNs
(attribute = pixel)

GPU 1 GPU 2

GPU 3 GPU 4

Attribute parallelism for GNNs
(attribute = vertex)

GPU 1

GPU 2
GPU 3
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The SOAP Search Space
• Samples: partitioning training samples (Data Parallelism)
• Operators: partitioning ML operators (Model Parallelism)
• Attributes: partitioning attributes in a sample (e.g., pixels)
• Parameters: partitioning parameters in an operator (Tensor Model Parallelism)
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21Parallelizing a 1D convolution in Parameter



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hybrid Parallelism in SOAP
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Different strategies perform the same computation.

Example parallelization strategies for 1D convolution
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Data parallelism

A parallelization strategy in SOAP (1.2x faster)
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Data parallelism

A parallelization strategy in SOAP (1.2x faster) 24
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Challenges of Discovering Fast Strategies in SOAP

25

1. SOAP contains billions or more possible strategies

2. Evaluating a strategy on hardware is too slow

MCMC search algorithm

Execution simulator
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FlexFlow Overview

MCMC
Search Alg.

Distributed Runtime

Best Found Strategy

Candidate 
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Simulated 
Performance

Computation Graph Hardware Topology
Network

GPU GPU

CPU

Conv Conv
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MatMul
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GPU GPU

CPU

Pool

Execution 
Simulator

FlexFlow

(Cost Model)
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A deep learning model for ads recommendation
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Lesson 1: Automated Approaches Offer 3-10x Improvement
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Data Layout 
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TASO: Up to 3.1x
PET: Up to 2.5x

FlexFlow: Up to 10x
Unity: Up to 3.6x

Lux: Up to 10x
Roc: Up to 4.1x
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Common Advantages of Automated Approaches

• Better runtime performance: discovering novel optimizations hard to 
manually designed, 3-10x speedup over manual optimizations

• Less engineering effort: code for discovering optimizations is generally 
much less than manual implementation of these optimizations

• Stronger correctness guarantees: using formal verification techniques

32Lesson 1: Automated Approaches Offer 3-10x Improvement
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Device 1

Lesson 2: Joint Optimization is Critical to Performance
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Unity: up to 3.6x 
1. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI’22.
2. TopoOpt: Optimizing the Network Topology for Distributed DNN Training. NSDI’23.
3. MetaFlow: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys’19
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MetaFlow: up to 1.3x 

TopoOpt: up to 3x 
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Auto-
Parallelization

Graph 
Optimization

?
34Lesson 2: Joint Optimization is Critical to Performance
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Auto-
Parallelization
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35Lesson 2: Joint Optimization is Critical to Performance
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≈ 𝟔× less communication!

36Lesson 2: Joint Optimization is Critical to Performance
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37Lesson 2: Joint Optimization is Critical to Performance
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Unity

Representation
Parallel Computation 
Graph (PCG)

Hierarchical Search 
Algorithm

Scalability

38Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI’22



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Joint Optimization Enables Better Performance and 
Scalability

39

CANDLE-Uno

Lesson 2: Joint Optimization is Critical to Performance
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Device 1

Lesson 2: Joint Optimization is Critical to Performance
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Unity: up to 3.6x 
1. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. OSDI’22.
2. TopoOpt: Optimizing the Network Topology for Distributed DNN Training. NSDI’23.
3. MetaFlow: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys’19
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Lesson 3: Combining ML and Systems Optimizations is 
Promising but Challenging

• Graph Transformations
• Auto Parallelization
• Kernel Generation
• Data Layout and Placement

• Quantization
• Low-Rank Adaptation
• Distillation
• Neural Architecture Search

41

Systems 
Optimizations

ML
Optimizations
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Lesson 3: Combining ML and Systems Optimizations is 
Promising but Challenging
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Systems 
Optimizations

ML
Optimizations

Pro: preserve equivalence

Con: miss advanced optimizations

Pro: better performance
• Faster ML operators
• Less Computation
Con: potential accuracy loss

Achieve the best of both worlds?
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Equivalent 
Optimizations

Approximate
Optimizations

Runtime Performance

Predictive Performance

Lesson 3: ML and Systems Optimizations is Promising but Challenging 
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Three Lessons

1. Automated approaches can offer 3-10x 
improvement on most tasks

2. Joint optimization is critical

3. Combing systems and ML optimizations is 
promising but challenging
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