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Recap: Transformer Block

output
A typical transformer block 1
normalize
Z = SelfAttention(X Wy, XWo, XWy,) oo e
Z = LayerNorm(X + Z) normalize
H = LayerNorm(ReLU(ZW)W, + Z) R [ Seitationton |
5 matmul
—*
(multi-head) self-attention, followed by a linear layer and | [_softmax
ReLU and some additional residual connections and mafmul
normalization ——




Normal Feed Forward Layer

Feed forward H = LayerNorm(ReLU(ZW;)W, + Z)

Wl ERnXTn

Increasing feature size will increase compute quadratically

Everything is mixed together in the FFN(feed forward network) layer



Mixture-of-Experts

: make each expert focus on predicting the right answer for a
subset of cases

) /MoE layer \
—> > '—»
A A
o G(x),| [G(X)nq
MoE MoE
layer layer Expert 1 Expert 3 ERCI Expert n
A A

In practice, each expert here is an FFN



A Closer Look at Mixture-of-Experts

A typical MoE layer (assume single instance and activate two experts )

Gating: G = Softmax(W;X) (MoE layer
Expert indices: I ={iy, iy} = TopK(G, k = 2)
. . . GiO _ Gil
Output weight: Sp = (Gi0+Gi1)’Sl = Gnrer) 600, G(x)n:xpem
Output: Y = soFFN; (X) + s{FFN; (X) o]
\

Greedily select top-K experts among N

Example model: Mixtral-8x7B selects 2 experts among eight

Different models may have different FFN configurations, usually contains multiple linear layers
and some non-linear mixing



Discussions

What are the advantage of using Mixture of Experts vs Linear layers



Transformers + Mixture of Experts

Simply replace the FFN layer in a transformer model by mixture of experts

. v+ [TTTTT] ve[TTTTT]
. -, A A
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L7 ’ r >[ Add + Normalize }:
7 A A
; .7 P ( ------- ﬁ /->®( -------- . \
PET ] :‘/[ FFN1][FFN2][FFN3][FFN4] FFN 1 [FFN2][FFN3][FFN4]’::
1 e \ e " 0.8
Switching FFN Layer ] p=0.65 p="
1 il
Add + Normalize ] \

T § A h\ /

Self-Attention - :[ Add + Normalize ]4

! f f

X AN Self-Attention

~
AN . . A A
AN Positional 3 Positional D
AN embedding Y embedding Y
~
x1[ITT1TT] x[TTTTT]

More Parameters
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Discussions

What are opportunities and challenges in accelerating mixture
of expert layers?
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Single Batch Setting

Gating: G = Softmax(XW;)

Expert indices: I ={iy, iy} = TopK(G, k = 2)
. . _ GiO _ Gil

Output weight: So = (Gio+Gil)’Sl GRS

Output: Y = soFFN; (X) + s, FFN; (X)

Only two of n experts are used

/MoE layer
G(x),| [G(X)py
Gating
Network
K L

We only need to load the weights of these experts during computation

Helps to speedup computations
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Batched Linear Layer

Z=XW,X e RbxXn |y ¢ Rnxm
b is the batch size

When b becomes larger, we get better compute efficiency

due to memory load reuse in matrix multiply and hardware
specialization via TensorCore
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Batching MoE computation

Instance 0
Expert 0
Zo
Zo
Selected il = zs
Inputs Experts X x w, = Z
% 2, Instance 1
41
i 0.2} Expert 1 7
X1 - {0,1} - x — Z3 »
i 1 x W, = Instance 2
X7 routing {0,2} permute X3 Zy t
un-permute 2,
1,2
X3 .2} Expert 2 >
6
X0 Zsg
- x W, = 2 Instance 3
X3 Z Zy
Color tracks instance indices 2

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

=

mixing
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Batched Expert Compute

i weights
Expert 0 indptr data g
Xo Zo W
X1 x Wl - Z1 ° 0 1
X3 22 > i WZ
X2
5
Expert 1 X W3
Z 8
- x WZ — = X3
x3 Z4 — > . .
Xo Z = GroupGemm(data, indptr, weights)
Expert 2 X,
Xo Z5 X3

x W3= Ze

In practice can be computed by one GPU kernel, benefit from batching
Example input in compressed row(CSR) format
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A Closer Look at Permutation

Selected
Inputs Experts
X0 {0,2}
X1 - {0,1}
Xy routing  {0,2}
X3 {1,2}

Permutation

indices

{0,5}
{1,3}
{2,6}
4,7}

How to get the permutation indices

efficiently in GPU?

=

index
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Getting Permutation Indices with Prefix Sum

Selected Selection mask prefix sum
[ [
%o {0,2} [1, 0, 1], B, Z, Z%,
X1 # {0,13 - [1, 1, @], - > 4 > -
X, routing  {0,2} [1, ©, 1], %g: g: ;%:
0, 1, 1 y 2
o7 {1,2} ] [ ) ) ] ]
mask cumsum(flatten(mask.T))

.reshape(3, 4).T

Prefix sum(scan) can be efficiently parallelized in GPU

Permutation indices

[

[0, 5],
[1, 31,
[2, 6],
[4, 7]
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Revisit the Batched Compute

indptr data weights
Expert O P 9
X Zo W
W, = z 0 D 1
X1 x 1 3 x1 "
X2 22 2
X2
5
Expert 1 X W3
Z 8
- x WZ = 3 X3
X3 Zy L
X0
Expert 2 X,
Xo Z5 X3
X2 x W3 = Zg
X3 Zy

Discussion: How to get indptr from the existing data?
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Discussions

What are opportunities and challenges in parallelizing mixture
of expert layers?
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