15-442/15-642: Machine Learning Systems

Mixture of Experts

Spring 2024

Tiangi Chen and Zhihao Jia
Carnegie Mellon University

4/1/24

Outline

Mixture of Experts

Efficiently Compute Mixture of Experts

Outline

Mixture of Experts

Recap: Transformer Block

output
A typical transformer block 1
normalize
Z = SelfAttention(X Wy, XWo, XWy,) oo e
Z = LayerNorm(X + Z) normalize
H = LayerNorm(ReLU(ZW)W, + Z) R [Seitationton |
5 matmul
—*
(multi-head) self-attention, followed by a linear layer and | [_softmax
ReLU and some additional residual connections and mafmul
normalization ——

Normal Feed Forward Layer

Feed forward H = LayerNorm(ReLU(ZW;)W, + Z)

Wl ERnXTn

Increasing feature size will increase compute quadratically

Everything is mixed together in the FFN(feed forward network) layer

Mixture-of-Experts

: make each expert focus on predicting the right answer for a
subset of cases

) /MoE layer \
—> > '—»
A A
o G(x),| [G(X)nq
MoE MoE
layer layer Expert 1 Expert 3 ERCI Expert n
A A

In practice, each expert here is an FFN

A Closer Look at Mixture-of-Experts

A typical MoE layer (assume single instance and activate two experts)

Gating: G = Softmax(W;X) (MoE layer
Expert indices: I ={iy, iy} = TopK(G, k = 2)
. . . GiO _ Gil
Output weight: Sp = (Gi0+Gi1)’Sl = Gnrer) 600, G(x)n:xpem
Output: Y = soFFN; (X) + s{FFN; (X) o]
\

Greedily select top-K experts among N

Example model: Mixtral-8x7B selects 2 experts among eight

Different models may have different FFN configurations, usually contains multiple linear layers
and some non-linear mixing

Discussions

What are the advantage of using Mixture of Experts vs Linear layers

Transformers + Mixture of Experts

Simply replace the FFN layer in a transformer model by mixture of experts

. v+ [TTTTT] ve[TTTTT]
. -, A A
’
L7 ’ r >[Add + Normalize }:
7 A A
; .7 P (------- ﬁ /->®(-------- . \
PET] :‘/[FFN1][FFN2][FFN3][FFN4] FFN 1 [FFN2][FFN3][FFN4]’::
1 e \ e " 0.8
Switching FFN Layer] p=0.65 p="
1 il
Add + Normalize] \

T § A h\ /

Self-Attention - :[Add + Normalize]4

! f f

X AN Self-Attention

~
AN . . A A
AN Positional 3 Positional D
AN embedding Y embedding Y
~
x1[ITT1TT] x[TTTTT]

More Parameters

Outline

Efficiently Compute Mixture of Experts

10

Discussions

What are opportunities and challenges in accelerating mixture
of expert layers?

11

Single Batch Setting

Gating: G = Softmax(XW;)

Expert indices: I ={iy, iy} = TopK(G, k = 2)
. . _ GiO _ Gil

Output weight: So = (Gio+Gil)’Sl GRS

Output: Y = soFFN; (X) + s, FFN; (X)

Only two of n experts are used

/MoE layer
G(x),| [G(X)py
Gating
Network
K L

We only need to load the weights of these experts during computation

Helps to speedup computations

12

Batched Linear Layer

Z=XW,X e RbxXn |y ¢ Rnxm
b is the batch size

When b becomes larger, we get better compute efficiency

due to memory load reuse in matrix multiply and hardware
specialization via TensorCore

13

Batching MoE computation

Instance 0
Expert 0
Zo
Zo
Selected il = zs
Inputs Experts X x w, = Z
% 2, Instance 1
41
i 0.2} Expert 1 7
X1 - {0,1} - x — Z3 »
i 1 x W, = Instance 2
X7 routing {0,2} permute X3 Zy t
un-permute 2,
1,2
X3 .2} Expert 2 >
6
X0 Zsg
- x W, = 2 Instance 3
X3 Z Zy
Color tracks instance indices 2

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

=

mixing

Yo

Y1

Y2

V3

14

Batched Expert Compute

i weights
Expert 0 indptr data g
Xo Zo W
X1 x Wl - Z1 ° 0 1
X3 22 > i WZ
X2
5
Expert 1 X W3
Z 8
- x WZ — = X3
x3 Z4 — > . .
Xo Z = GroupGemm(data, indptr, weights)
Expert 2 X,
Xo Z5 X3

x W3= Ze

In practice can be computed by one GPU kernel, benefit from batching
Example input in compressed row(CSR) format

15

A Closer Look at Permutation

Selected
Inputs Experts
X0 {0,2}
X1 - {0,1}
Xy routing {0,2}
X3 {1,2}

Permutation

indices

{0,5}
{1,3}
{2,6}
4,7}

How to get the permutation indices

efficiently in GPU?

=

index

16

Getting Permutation Indices with Prefix Sum

Selected Selection mask prefix sum
[[
%o {0,2} [1, 0, 1], B, Z, Z%,
X1 # {0,13 - [1, 1, @], - > 4 > -
X, routing {0,2} [1, ©, 1], %g: g: ;%:
0, 1, 1 y 2
o7 {1,2}] [))]]
mask cumsum(flatten(mask.T))

.reshape(3, 4).T

Prefix sum(scan) can be efficiently parallelized in GPU

Permutation indices

[

[0, 5],
[1, 31,
[2, 6],
[4, 7]

17

Revisit the Batched Compute

indptr data weights
Expert O P 9
X Zo W
W, = z 0 D 1
X1 x 1 3 x1 "
X2 22 2
X2
5
Expert 1 X W3
Z 8
- x WZ = 3 X3
X3 Zy L
X0
Expert 2 X,
Xo Z5 X3
X2 x W3 = Zg
X3 Zy

Discussion: How to get indptr from the existing data?

18

Discussions

What are opportunities and challenges in parallelizing mixture
of expert layers?

19

Outline

Mixture of Experts

Efficiently Compute Mixture of Experts

20

