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LLMs Need Finetuning

• Finetuning: start from a pretrained base model and finetune model 
parameters for downstream tasks
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Task Dataset GPT-3 Few-shot GPT-3 Finetuned
Q&A SQuAD V2 (F1) 69.8% 88.4%
Textual Entailment RTE (Acc) 69% 85.4%
NL2QL WikiSQL (Acc) 20% 73%

Spider (Acc) 18% 62%
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Finetuning LLMs is Extremely Expensive 
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Require same resources as training from scratch:

• Eighty A100-40GB GPUs to finetune 175B GPT-3
• One TB of data per checkpoint
• Ten A100-40GB GPUs to serve a finetuned model
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Outline: Efficient LLM Finetuning Techniques

• Tuning prompts
• Prompt engineering
• Prefix tuning

• Tuning adapters
• LoRA: Low-Rank Adaptation
• QLoRA: quantization + LoRA
• Side tuning
• Serving adapters
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[Accelerating LLM requires machine] learning systems

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

optimizations
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LLMs: In-Context Learning

LLMs can understand task description from a few input-output examples

5GPT-3: Language Models are Few-Shot Learners

GPT-3 makes increasingly efficient use of in-context information. 

In-context learning does not require task-specific training.
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Prompt Engineering: 
Manually Design Text Prompts for Customized Tasks

6
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Prompt Engineering Techniques

7Figure credits: Cobus Greyling
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Example: Chain-of-Thought Prompting

• Break a large task into sub-tasks and chain them together

8
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Limitations of Prompt Engineering

• Hard to design prompts: require extensive effort to create a good prompt
• Non-differentiable: cannot directly finetune on a given dataset

Can we make prompt trainable/differentiable?

9



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Prompt Tuning / Prefix Tuning

Prepend a sequence of virtual 
tokens to the input

LLM attends to the prefix as if it 
were a sequence of tokens

Freeze the LLM’s parameters and 
finetune prefix parameters

10* Prefix-Tuning: Optimizing Continuous Prompts for Generation

Virtual tokens Input tokens
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Prompt Engineering v.s. Prompt Tuning

Prompt Engineering
• Use a sequence of regular tokens 

as text prompt
• Leverage LLM’s in-context learning 

Prompt Tuning
• Use a sequence of virtual tokens, 

each with trainable parameters
• Freeze LLM’s parameters and 

finetune new parameters through 
backpropagation

11
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Outline: Efficient LLM Finetuning Techniques

• Tuning prompts
• Prompt engineering
• Prompt/prefix tuning

• Tuning adapters
• LoRA: Low-Rank Adaptation
• QLoRA: quantization + LoRA
• Side tuning
• Serving adapters
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Adapter Tuning

• Add new adapter modules (with a 
few parameters) to an LLM

• During finetuning, freeze the original 
network and only finetune adapters

Adapter modules:
• Small number of parameters -> low 

memory/compute overheads
• Near-identity initialization -> stable training 

of the adapted model

13* Parameter-Efficient Transfer Learning for NLP. 2019
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Adapter Tuning

• Comparable performance as full training
• Much fewer trainable parameters

14* Parameter-Efficient Transfer Learning for NLP. 2019
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Low-Rank Adaptation (LoRA)
• Freeze pretrained model weights and inject trainable rank decomposition 

matrices into each layer
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* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021
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Low-Rank Adaptation (LoRA)

16
* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021
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Low-Rank Adaptation (LoRA)

• Apply LoRA to Attention • Apply LoRA to MLP layer
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* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021
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LoRA Does Not Increase Inference Latency
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LoRA Variant 1 (LoHa): Low-Rank Hadamard Product

• Use Hadamard (element-wise) product
• ∆W can have the same number of trainable parameters but a higher rank 

and expressivity

19
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LoRA Variant 2 (LoKr): Low-Rank Kronecker Product

• Replace matrix product with Kronecker product
• Preserve the rank of the original weight matrix through Kronecker product

20
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Outline: LLM Finetuning Methods

• Tuning prompts
• Prompt engineering
• Prefix tuning

• Tuning adapters
• LoRA: Low-Rank Adaptation
• QLoRA: quantization + LoRA
• Side tuning
• Serving adapters

21



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Quantization 

Quantization: converting a data type into fewer bits
Example: FP32 tensor -> Int8 tensor with range [−128, 127]:

Quantization:

Dequantization:

22

Issue: when there are large magnitude values, quantization bins 
are not well utilized
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Block-wise Quantization

Chunk input tensor into blocks that are independently quantized
Each block has its own quantization constant 𝑐5 saved in FP32

• Assume a block size of 𝐵, quantization overhead: 678  bits per parameter

• When B=64, block-wise quantization introduces an overhead of 0.5 bits 
per parameter

23
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Block-wise Double Quantization

Quantization constants 𝐶79:67 𝑖 	of the first quantization as inputs to a 
second quantization

𝐶7;<=> 𝑖 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥_𝑘(𝐶79:67 𝑘 )
𝐶79:67 𝑖 )

• Use 8-bit integers with a block size of 256 for the second quantization
• Reduce the block-wise quantization overhead from 32/64=0.5 bits to 

8/64+32/(64*256)=0.127 bits

24QLORA: Efficient Finetuning of Quantized LLMs
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QLoRA: Quantized LoRA

• QLoRA for a single linear layer

25QLORA: Efficient Finetuning of Quantized LLMs

4-bit frozen 
weights

16-bit LoRA 
weights

16-bit 
activations
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QLoRA Achieves On-Par Performance as Full Finetuning

26QLORA: Efficient Finetuning of Quantized LLMs
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Outline: LLM Finetuning Methods

• Tuning prompts
• Prompt engineering
• Prefix tuning

• Tuning adapters
• LoRA: Low-Rank Adaptation
• QLoRA: quantization + LoRA
• Side tuning
• Serving adapters

27
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An Issue with LoRA (and Other Adapter Tuning Methods)

28

• Adapter networks reduce trainable weights and optimizer states 
• But require saving intermediate activations for back propagation
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Side Tuning

Use side networks (a smaller version of the 
base model) as adapters

Avoid backpropagating the base model
• No need to keep intermediate activations

29* Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models. 
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Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double 
quantization

30Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
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Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double 
quantization

2. Introduce a side network 
separated from the base LLM

31Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
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Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double 
quantization

2. Introduce a side network 
separated from the base LLM
• Avoids backpropagation 

through the base LLM

32Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
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Key insight: information flows 
from base to side but not the 
other way
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Quantized Side Tuning

33

• Same accuracy as QLoRA while requiring less memory

On-par chatbot performance as others
(Use GPT-4 as a judge)
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Recap: Efficient LLM Finetuning Methods

• Tuning prompts
• Prompt engineering
• Prefix tuning

• Tuning adapters
• LoRA: Low-Rank Adaptation
• QLoRA: quantization + LoRA
• Side tuning

34


