15-442/15-642: Machine Learning Systems

LLM Finetuning Techniques

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

3/18/24

LLMs Need Finetuning

* Finetuning: start from a pretrained base model and finetune model
parameters for downstream tasks

GPT-3 Few-shot | GPT-3 Finetuned

SQuAD V2 (F1) 69.8% 88.4%
Textual Entailment RTE (Acc) 69% 85.4%
NL2QL WikiSQL (Acc) 20% 73%

Spider (Acc) 18% 62%

utput

—’T—

Finetuning LLMs is Extremely Expensive

Require same resources as training from scratch:

« Eighty A100-40GB GPUs to finetune 175B GPT-3
* One TB of data per checkpoint
« Ten A100-40GB GPUs to serve a finetuned model

Outline: Efficient LLM Finetuning Techniques

* Tuning prompts
: « Prompt engineering o : :
* Prefix tuning : : ' JLTIT Jrazedenscd 3)

[Accelerating LLM requires machine] : > learning ;> systems :> optimizations

: » Tuning adapters
' « LoRA: Low-Rank Adaptation
* QLoRA: quantization + LoRA

+ Side tuning T \/ v ———

* Servmg adapters . Outputs Iearnlng i systems optlmlzatlons [EOS]

LLMs: In-Context Learning

LLMs can understand task description from a few input-output examples

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Accuracy (%)

Zero-shot One-shot Few-shot

! l e e

175B Params

Natural Language
Prompt

\

60
50
40

30 No Prompt
13B Params

20

10

10 - 1.3B Params

0 -

0 10° 10’
Number of Examples in Context (K)

GPT-3 makes increasingly efficient use of in-context information.

@ In-context learning does not require task-specific training.

GPT-3: Language Models are Few-Shot Learners

Prompt Engineering:
Manually Design Text Prompts for Customized Tasks

Sort by

Uses Category v X ‘ + NEW TEMPLATE ‘

Template Library®

Code: Create Function
Task p» Coding <>

Provide a code snippet for a function to meet
requirements in a particular programming language

i s> 21

Write: Email
Task > wiiting (B
Write an email to your specifications

e 1> 12

Act as: Debater
persona @ other B

Code: Refactor

Task p» Coding <>
Play the role of a debater, practice debating a chosen topic Refactor code to be simpler, cleaner or more efficient

e 2> 5 i 3> 4

Code: Debug
Task p» Coding <>

Send a message... >

Prompt Engineering Techniques

Least-To-Most

Self-Ask

Meta-Prompt
Chain-Of-Thought

ReAct
) PrOmpt Symbolic Reasoning
Engineering PAL
. Ilterative Prompting
TeChnlqueS Sequential Prompting

Self-Consistency
Automatic Reasoning and Tool-use (ART)

Generated Knowledge

Figure credits: Cobus Greyling

Example: Chain-of-Thought

Prompting

* Break a large task into sub-tasks and chain them together

Standard Prompting

st

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? J

\—

A: The answer is 27. x }

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have? J

3

A:

answeris 9. ¢/

Limitations of Prompt Engineering

« Hard to design prompts: require extensive effort to create a good prompt
* Non-differentiable: cannot directly finetune on a given dataset

Can we make prompt trainable/differentiable?

Prompt Tuning / Prefix Tuning

Prepend a sequence of virtual
tokens to the input

LLM attends to the prefix as if it
were a sequence of tokens

Freeze the LLM’s parameters and
finetune prefix parameters

* Prefix-Tuning: Optimizing Continuous Prompts for Generation

Fine-tuning

Transformer (Translation)
[\ =) = | = @2 HE B

Transformer (Summarization)
[1] [1 i [1 i) Il B

Transformer (Table-to-text)

il

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Output (table-to-text)

Prefix
(Translation)

' Prefix
(Summarization)
1

Prefix
(Table-to-text)

Input (table-to-text)

Prefix-tuning

Transformer (Pretrained)

I LI

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

e

Input tokens

Virtual tokens

10

Prompt Engineering v.s. Prompt Tuning

» Use a sequence of regular tokens
as text prompt

» Leverage LLM’s in-context learning

» Use a sequence of virtual tokens,
each with trainable parameters

* Freeze LLM's parameters and
finetune new parameters through
backpropagation

11

Outline: Efficient LLM Finetuning Techniques

° Tunlng prompts [Accelerating LLM requires machine] > learning > Ssystems > optimizations
« Prompt engineering | e S Y vt S S e T
* Prompt/prefix tuning

: « Tuning adapters
' « LoRA: Low-Rank Adaptation
* QLoRA: quantization + LoRA

+ Side tuning T \/ v ———

* Servmg adapters . Outputs Iearnmg i systems optlmlzatlons [EOS]

12

Adapter Tuning

« Add new adapter modules (with a
few parameters) to an LLM

 During finetuning, freeze the original
network and only finetune adapters

« Small number of parameters -> low
memory/compute overheads

» Near-identity initialization -> stable training
of the adapted model

* Parameter-Efficient Transfer Learning for NLP. 2019

T T e T ——

[Layer

Norm]

Transformer a

Adapter

Layer

[2x Feed

-forward
layer

A

;

[Layer

Norm]

©

D —

Feed-forward layer J

1
Multi-headed
attention

[R (S A U U U U S U i g SN U P U S

- e e e e e e ——

- ————

i’ Adapter
Layer

OOOIOOO

Feedforward
up-project

\

Nonlinearity

[
O]O

Feedforward
down-project

-~ -

- - —— -

13

Adapter Tuning

« Comparable performance as full training

* Much fewer trainable parameters

Total num Trained

params params / task CoLA SST MRPC STS-B QQP MNLI, MNLI,n OQNLI RTE | Total
BERT ArRGE 9.0x 100% 60.5 94.9 89.3 87.6 T72.1 86.7 8.9 91.1 70.1 | 80.4
Adapters (8-256) | 1.3x 3.6% 59.5 94.0 89.5 86.9 71.8 84.9 85.1 90.7 71.5 | 80.0
Adapters (64) 1.2x 2.1% 56.9 94.2 89.6 87.3 T1.8 85.3 84.6 914 688 | 79.6

* Parameter-Efficient Transfer Learning for NLP. 2019

14

Low-Rank Adaptation (LoRA)

* Freeze pretrained model weights and inject trainable rank decomposition
matrices into each layer

) — b
B+

Pretrained
Weight

Pretrained
Weight

d
W= Wx+ AWx h =Wx + BAx
Full Finetuning LoRA

* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021

Low-Rank Adaptation (LoRA)

Pretrained
Weights

W e R

r
" —
~ =

* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021

16

Low-Rank Adaptation (LoRA)

* Apply LoRA to Attention

Multi-Head

‘ Self Attention |

TIIY

* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021

* Apply LoRA to MLP layer

o
=

17

LoRA Does Not Increase Inference Latency

Pretrained Pretrained
Weight Weight

18
* LORA: Low-Rank Adaption of Large Language Models. Hu et al. 2021

LoRA Variant 1 (LoHa): Low-Rank Hadamard Product

« Use Hadamard (element-wise) product

« AW can have the same number of trainable parameters but a higher rank
and expressivity

lf’
Frozen \ pxr/ Frozen
Pretrained BeR Pretrained
Weight X Weight
Woekra | /AeR™N\ | W, err
h
LoRA LoHA (ours)

 : Matrix Product (+) : Hadamard Product

LoRA Variant 2 (LoKr): Low-Rank Kronecker Product

* Replace matrix product with Kronecker product
* Preserve the rank of the original weight matrix through Kronecker product

|

grozen » a.llB e al.,,_B
retrain
Weight A B = .
ll(] G 'Ii‘n\"‘ * *

L Ain B - Amn B i

h

LoKr (ours)

(5{;- : Kronecker Product

Outline: LLM Finetuning Methods

* Tuning prompts
* Prompt engineering
* Prefix tuning

* Tuning adapters
 LoRA: Low-Rank Adaptation
 QLoRA: quantization + LORA
 Side tuning
« Serving adapters

21

Quantization

Quantization: converting a data type into fewer bits
Example: FP32 tensor -> Int8 tensor with range [-128, 127]:

Quantization: X™8 — round (

Dequantization: dequant(c

127

absmax (X FP32)

XFP32) — 1.Ound(cFP32 . XFP32),

FP32 Int8 XIntS FP32
nt
X8y — - X

22

Block-wise Quantization

Chunk input tensor into blocks that are independently quantized
Each block has its own quantization constant ¢; saved in FP32

« Assume a block size of B, quantization overhead: — bits per parameter

* When , block-wise quantization introduces an overhead of bits
per parameter

23

Block-wise Double Quantization

Quantization constants C£32[i] of the first quantization as inputs to a
second quantization

127
CINTB[i] = round(

CFPBZ .
absmax_k(CEP32[k]) ° LD

« Use 8-bit integers with a block size of 256 for the second quantization
* Reduce the block-wise quantization overhead from to

QLORA: Efficient Finetuning of Quantized LLMs

24

QLoRA: Quantized LoRA

Full Finetuning LoRA QLoRA

(No Adapters)
i /\
State i e
(32 bit) D D D«DDD
Adapters | | | | ¥y v v | ¥ v o e
(16 bit) o O O O O O

v \ v T T T W
Base A A A T
Model [] [T T] Parameter.UPdates =

Gradient Flow ==l

Paging Flow ==l

16-bit Transformer 16-bit Transformer 4-bit Transformer

* QLoRA for a single linear layer

YBF16 — XBF16d0ubleDequant(cl;'P32, Clé-bit, WNF4) 4 XBF16L113F16L123F16
)

\ . _'_l \ Y J
16—.b|t | 4-bit frozen 16-bit LORA
activations weights weights

QLORA: Efficient Finetuning of Quantized LLMs

QLoRA Achieves On-Par Performance as Full Finetuning

Dataset GLUE (Acc.) Super-Naturallnstructions (RougeL.)

Model RoBERTa-large T5-80M T5-250M T5-780M T5-3B T5-11B
BF16 88.6 40.1 42.1 48.0 54.3 62.0
BF16 replication 88.6 40.0 42.2 47.3 54.9 -
LoRA BF16 88.8 40.5 42.6 47.1 55.4 60.7
QLORA Int8 88.8 40.4 42.9 45.4 56.5 60.7
QLORA FP4 88.6 40.3 42.4 47.5 55.6 60.9
QLORA NF4 + DQ - 40.4 42.7 47.7 55.3 60.9

QLORA: Efficient Finetuning of Quantized LLMs

Outline: LLM Finetuning Methods

* Tuning prompts
* Prompt engineering
* Prefix tuning

* Tuning adapters
 LoRA: Low-Rank Adaptation
* QLoRA: quantization + LoRA
 Side tuning
« Serving adapters

27

An Issue with LoRA (and Other Adapter Tuning Methods)

» Adapter networks reduce trainable weights and optimizer states

@ * But require saving intermediate activations for back propagation

®

cn
@
I,

LoRA for MLP layers

_ Reduce the Reduce the
Intermediate | 197GB weights intermediate activations
activations and the and the
optimzer states optimzer states
\/ \ 4
420GB
Optimizer
Reduce all
states Ef 78GB
/
197GB 24GB N
: 69GB
Weights 1 140GB 13GB 140GB 4GB
36GB 36GB
Full Funtuning QLoRA LST QST (Ours)

28

Side Tuning

Use side networks (a smaller version of the
base model) as adapters

Intermediate | 197GB
activations

@ Avoid backpropagating the base model
* No need to keep intermediate activations opimizer
P e

states

Fixed Features Fine-Tune Side-Tune Weights

y

Reduce the
weights
and the

optimzer states

Reduce the

intermediate activations
and the

optimzer states

E

* Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models.

420GB
E 78GB Reduce all
_/
197GB 24GB v
69GB
140GB 13GB 140GB 4GB
36GB 36GB
Full Funtuning QLoRA LST QST (Ours)
29

Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double

quantization
abit _ Myt
AT =round (Absmax(X 16bit

—round (cL6bit | Xlez’t)

)

)X16b'it> (1)
2)

Output

i

LM head

i

16bit
Iy

~
A,

16bit

J

it

Embedding

t

Input

Output

i

LM head]

Step

4-bit Quantization

Embedding]

Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models

t

Input

30

Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double
quantization

2. Introduce a side network
separated from the base LLM

Base LLM

/—-)[Add & Norm

A

Feed Forward
dequant to 16bit

E—

A

| |
2| = Downsample

J
]
> sasnom |
J

Multi-head Attention
dequant to 16bit

Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models

Side network

Multi-head

Attention
A A A

A A A/

S A EEEEEREEER n
EEEEEEEEEEEDR
\ 4
Vo
X Buljoogxep
3 Jeaur
>
s |5
g
A
y
s
L
-
=
=
Q =
2
+
=
>3
g

31

Quantized Side Tuning in Two Steps

1. 4-bit block-wise, double
quantization

2. Introduce a side network
separated from the base LLM

« Avoids backpropagation
through the base LLM

Key insight: information flows
from base to side but not the
other way

Output

i

LM head

i

N\

f16bit

N}
i

7

16bi
7%

J

|

it

Embedding

t

Input

Output

i

Output

A

LM head]

1
Step 1 M
1
1
4-bit Quantization Side Tuning
s

i

Dequantize Dequantlze

Side network

LM head (_@<_ <!
g

to 16bit to 16bit : [@] :
f4b’Lt ' E
N ; Task Switch

Step

Dequantlze

v N\
\& |

to 16bit =
| |
f4b’Lt
1

[Embedding]

[Embedding]

t

Input

Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models

t

Input

:I)ownsample

—>» Forward :
<€ - - Backprogation|

Quantized Side Tuning

« Same accuracy as QLoRA while requiring less memory

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.

QLoRA 25.0/6.3 25.2/10.1 25.6/15.5 26.5/254 27.7/46.8 36.4/87.5 45.9/15.6 54.7/25.4 64.1/95.5 36.8/36.5
QST 24.3/3.2 25.5/4.8 26.2/7.2 26.8/12.6 27.3/25.7 36.0/52.3 45.1/7.3 56.8/12.6 63.9/56.0 36.9/20.2

Table 2: Experiment results (accuracy/memory) on MMLU 5-shot.

QLoRA-70B

On-par chatbot performance as others Wiriting QST-70B
LLaMA-2-70B

(Use GPT-4 as a judge) Humanitics Roleplay

STEM Reasoning
0123456789

Extraction Math

Coding

33

Recap: Efficient LLM Finetuning Methods

* Tuning prompts
* Prompt engineering
* Prefix tuning

* Tuning adapters
 LoRA: Low-Rank Adaptation
* QLoRA: quantization + LoRA
 Side tuning

34

