15-442/15-642: Machine Learning Systems

LLMs Serving Techniques

Tianqi Chen and Zhihao Jia

Carnegie Mellon University

- At least ten A100-40GB GPUs to serve 175B GPT-3 in half precision
- Generating 256 tokens takes ~20 seconds
- Cannot process many requests in parallel
 - Per-request key/value cache takes 3GB GPU memory

Recall: Incremental Decoding

Main issues:

- Limited degree of parallelism \rightarrow underutilized GPU resources
- Need all parameters to decode a token \rightarrow bottlenecked by GPU memory access

Outline: LLMs Serving Techniques

- Continuous Batching
- Speculative Decoding

LLM Decoding Timeline

Batching Requests to Improve GPU Performance

Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

Continuous Batching

Benefits:

- Higher GPU utilization
- New requests can start immediately

• Receives two new requests R1 and R2

Maximum serving batch size = 3

Iteration 1: decode R1 and R2

(GPU)

• Receive a new request R3; finish decoding R1 and R2

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Iteration 2

• Iteration 3: decode R1, R3, R4

Continuous Batching

- Handle early-finished and late-arrived requests more efficiently
- Higher GPU utilization

Outline: LLMs Serving Techniques

- Continuous Batching
- Speculative Decoding

Recall: Incremental Decoding Issues

- Limited degree of parallelism \rightarrow underutilized GPU resources
- Need all parameters to decode a token \rightarrow bottlenecked by GPU memory access

Tradeoffs between Different Language Models

# Parameters	175B	13B	2.7B	760M	125M
TriviaQA	71.2	57.5	42.3	26.5	6.96
PIQA	82.3	79.9	75.4	72.0	64.3
SQuAD	64.9	62.6	50.0	39.2	27.5
latency	20 s	7.6s	2.7s	1.1s	0.3s
# A100s	10	1	1	1	1

Comparing multiple GPT-3 models*

Large models

Small models

Pro: better generative performance

Con: slow and expensive to serve

Pro: cheap and fast

Con: less accurate

Speculative Decoding

- 1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM

Speculative Decoding

- 1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM
- 2. Use the LLM to verify the SSM's prediction

Verifying Speculative Decoding Results

Generate 3 new tokens in one LLM decoding step

Verifying Speculative Decoding Results

- LLM inference is bottlenecked by accessing model weights
- using LLM to decode multiple tokens to improve GPU utilization

SpecInfer: Tree-based Speculative Inference & Verification

Key idea: not use LLMs as incremental decoder, use them as parallel token tree verifier

- Better performance: outperform existing LLM systems by <u>1.3-2.4x</u>
- **Higher efficiency:** reduce GPU memory access by <u>2.5-4.4x</u>
- Correctness: verification guarantees end-to-end equivalence

SpecInfer Workflow

Speculator

Learning-based Speculator

Collective Boost-Tuning

LLM-generated tokens

Collective Boost-Tuning Consistently Improves Performance

Token Tree Merge

• A compact way to represent speculated tokens

Token Sequences

Token Tree

Token Tree Verifier

Sequence-based Decoding

Issues:

- Redundant decoding computation
- More requests \rightarrow more GPU memory for key/value cache

Tree Attention

• same output as sequence attention for each token; no redundancy

Token Sequences

- A DFS-based approach to linearizing a token tree
- Tree topology-aware causal mask
- Decoding all tokens in a single GPU kernel

Speculated Token Tree

Verification Workflow

Stochastic Decoding

Challenge: verifying stochastic equivalence

 $P_{\text{IncrDecode}}(\cdot | x_{\leq i}, \text{LLM}) = P_{\text{SpecInfer}}(\cdot | x_{\leq i}, \text{LLM}, \{\text{SSM}_i\})$

- A strawman approach: naïve sampling
 - Use LLM to sample $x_i \sim P_{\text{IncrDecode}}(\cdot | x_{\leq i}, \text{LLM})$
 - Verify if x_i is in the token tree

Naïve Sampling can be Suboptimal

• Assume one LLM, two SSMs, and four possible tokens: t_1 , t_2 , t_3 , t_4

Token Tree

Naïve sampling's verification prob. = 50%

But we can do better by directly accepting SSM 2; verification prob. = 100%

Key issue: naïve sampling ignores correlation between $P(\cdot | x_{< i}, SSM)$ and $P(\cdot | x_{< i}, LLM)$

Speculative Sampling

- 1. Sample a token $x \sim P(u_i | U, \Theta_{SSM})$ using SSM
- 2. If $P(x|U, \Theta_{SSM}) \le P(x|U, \Theta_{LLM})$, directly accept x
- 3. If $P(x|U, \Theta_{SSM}) > P(x|U, \Theta_{LLM})$, accept x with prob. $\frac{P(x|U, \Theta_{LLM})}{P(x|U, \Theta_{SSM})}$
- 4. If reject *x*, normalize residual distribution

 $P'(x|U, \Theta_{LLM}) = norm(\max(0, P(x|U, \Theta_{LLM}) - P(x|U, \Theta_{SSM})))$

Distributed LLM Serving

Tensor / Pipeline Model Parallelism

SpecInfer Accelerates LLM Inference by 1.3-2.4x

SpecInfer can Consistently Accelerate LLM Inference

LLM: LLaMA-65B, SSMs: LLaMA-160M

Open Research Questions

Speculator

Open Research Questions

Speculator

Open Research Questions noculator How to verify stochastic decoding? $t_{2.0}$ algorithm Multi-step speculative sampling $t_{1,0}$ learning $t_{2.1}$ $t_{3,0}$ [Accelerating LLM t_0 Naïve sampling design Sm svstem requires machine machine $t_{1.1}$ $t_{2.2}$ Greedy sampling translation model Mixture? Verified output: machine learning system optimization [machine]->learning'->algorithm system->design translation->model $t_{3.1}$ **Tree-based Parallel Decoding** design $t_{2.0}$ algorithm $t_{1,0}$ $t_{3.0}$ $\tau_{4,0}$ learning [EOS] $t_{2,1}$ design t_0 LLM system machine $t_{3,2}$ $t_{1.1}$ optimization translation $t_{2,2}$ $t_{3,3}$ [EOS] model learning design optimization [EOS] [EOS] system model Verifier

Recap: LLMs Serving Techniques

- Continuous Batching
- Speculative Decoding