15-442/15-642: Machine Learning Systems

Attention Optimizations

Tianqi Chen and Zhihao Jia

Carnegie Mellon University

Attention: $O = Softmax(QK^T) V$

Challenges:

- Large intermediate results
- Repeated reads/writes from GPU device memory
- Cannot scale to long sequences due to O(N²) intermediate results

Outline: Attention Optimizations

Part 1: LLM Training

FlashAttention

Part 2: LLM Inference

- Flash Decoding
- PagedAttention

These techniques are highly tailored for GPUs

Revisit: GPU Memory Hierarchy

FlashAttention

Key idea: compute attention by blocks to reduce global memory access

Two main Techniques:

- 1. Tiling: restructure algorithm to load query/key/value block by block from global to shared memory
- 2. Recomputation: don't store attention matrix from forward, recompute it in backward

^{*} FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tiling: Decompose Large Softmax into smaller ones by Scaling

- 1. Load inputs by blocks from global to shared memory
- 2. On chip, compute attention output wrt the block
- 3. Update output in device memory by scaling

$$softmax([A_1, A_2]) = [\alpha \times softmax(A_1), \beta \times softmax(A_2)]$$

$$softmax([A_1, A_2]) \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha \times softmax(A_1)V_1 + \beta \times softmax(A_2)V_2$$

Tiling

Animation credit: Francisco Massa

Recomputation: Backward Pass

By storing softmax normalization factors from forward (size N), recompute attention in the backward from inputs in shared memory

Attention	Standard	FlashAttention
GFLOPs	66.6	75.2
Global mem access	40.3 GB	4.4 GB
Runtime	41.7 ms	7.3 ms

Speed up backward pass with increased FLOPs

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

(An A100 has 108 SMMs -> 108 thread blocks)

• Step 1: assign different heads to different thread blocks (16-64 heads)

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across thread blocks?

(An A100 has 108 SMMs -> 108 thread blocks)

- Step 1: assign different heads to different thread blocks (16-64 heads)
- Step 2: assign different queries to different thread blocks (Why?)

Thread blocks cannot communicate; cannot perform softmax when partitioning keys/values

FlashAttention: Threadblock-level Parallelism

Do we need to handle workload imbalance?

No. GPU scheduler automatically loads the next block once the current one completes.

FlashAttention: Warp-Level Parallelism

How to partition FlashAttention across warps within a thread block?

FlashAttention: 2-4x speedup, 10-20x memory reduction

Memory linear in sequence length

Outline: Attention Optimizastions

Part 1: LLM Training

FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

- Flash Decoding
- PagedAttention

- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- Decoding phase (all other iterations):
 - Process a single token generated from previous iteration
 - Use attention keys & values of all previous tokens
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation

Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

 Yes, compute different queries using different thread blocks/warps

Decoding phase:

 No, there is a single query in the decoding phase

FlashAttention Processes K/V Sequentially

Inefficient for requests with long context (many keys/values)

Flash-Decoding Parallelizes Across Keys/Values

- 1. Split keys/values into small chunks
- 2. Compute attention with these splits using FlashAttention
- 3. Reduce overall all splits

Key insight: attention is associative and commutative

Flash-Decoding is up to 8x faster than prior work

Outline: Attention Optimizastions

Part 1: LLM Training

FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

- Flash-Decoding
- PagedAttention

[Accelerating LLM requires machine]

KV Cache

Static KV Cache Management Wastes Memory

- Pre-allocates contiguous space of memory to the request's maximum length
- Memory fragmentation
 - Internal fragmentation due to unknown output length
 - External fragmentation due to non-uniform per-request max lengths

Significant Memory Waste in KV Cache

Only 20-40% of KV cache is utilized to store actual token states

PagedAttention

Application-level memory paging and virtualization for KV cache

Memory management in OS

PagedAttention

Paging KV Cache Space into KV Blocks*

 KV block is a fixed-size contiguous chunk of memory that stores KV states from left to right

^{*} The term ``block" is overloaded in PagedAttention

Virtualizing KV Cache

Attention with Virtualized KV Cache

- 1. Fetch non-contiguous KV blocks using the block table
- 2. Apply attention on the fly

Key insight: attention is associative and commutative

Memory Efficiency of PagedAttention

Minimal internal fragmentation

- Only happens at the last block of a sequence
- # wasted tokens / seq < block size

No external fragmentation

Alan	Turing	is	а
computer	scientist	and	mathemati cian
renowned			
1			

Internal fragmentation

Recap: Techniques for Optimizing Attention

- FlashAttention: tiling to reduce GPU global memory access
- Auto-regressive Decoding: pre-filling and decoding phases, KV cache
- FlashDecoding: improving attention's parallelism by splitting keys/values
- PagedAttention: paging and virtualization to reduce KV cache's memory requirement