
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Attention Optimizations

Tianqi Chen

Carnegie Mellon University

1
3/12/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: O = Softmax(QKT) V

2

Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x d

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

A = mask(A)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline: Attention Optimizations

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference

• Flash Decoding

• PagedAttention

3

These techniques are highly tailored for GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Revisit: GPU Memory Hierarchy

4

Per-block shared memory

(readable/writable by all

threads in a block)

Device global memory

(readable/writable by all

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:

5

1. Tiling: restructure algorithm to load query/key/value block by

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling: Decompose Large Softmax into smaller ones by
Scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output
wrt the block

3. Update output in device memory by
scaling

6

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2 = 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 , 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 + 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling

7Animation credit: Francisco Massa

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recomputation: Backward Pass

By storing softmax normalization factors
from forward (size N), recompute attention in
the backward from inputs in shared memory

8

Attention Standard FlashAttention

GFLOPs 66.6 75.2

Global mem access 40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

9

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Threadblock-level
Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

• Step 2: assign different queries to
different thread blocks (Why?)

10

Thread blocks cannot communicate; cannot perform

softmax when partitioning keys/values

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Threadblock-level Parallelism

11

Queries

Keys/Values

Block 1

Block 2

Block 3

Block 4

Block 5

Do we need to handle workload imbalance?

No. GPU scheduler automatically loads the next block

once the current one completes.

Forward pass

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Warp-Level Parallelism

• How to partition FlashAttention across warps within a thread block?

12

Splitting across K/V requires

communication to add results

Splitting across Q avoids

communications

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: 2-4x speedup, 10-20x memory reduction

13

Memory linear in sequence length

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline: Attention Optimizastions

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

• Flash Decoding

• PagedAttention

14

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Generative LLM Inference: Autoregressive Decoding

15

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Input Prompt:

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding

16

learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Layer 3

1

2

5

2

0

1

0

3

1 1

Acc.

LLM

requires

machine

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Score

Pre-filling Phase

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding

17

learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Layer 3

learning

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Score

le
a
rn

in
g

Decoding Phase

1

2

5

2

0

1

0

3

1 1

Acc.

LLM

requires

machine

1 0 7 1 2

No need to

recompute

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid
recomputation

18

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the
decoding phase

19

Acc.

LLM

requires

machine
A

c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Comp.

Layer 3

Layer 2
learning

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Comp.

le
a
rn

in
g

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention Processes K/V Sequentially

20

Inefficient for requests with long context (many keys/values)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

21

Key insight: attention is associative and commutative

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Flash-Decoding is up to 8x faster than prior work

22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline: Attention Optimizastions

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

• Flash-Decoding

• PagedAttention

23

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

KV Cache Dynamically Grows and Shrinks

24

[Accelerating LLM requires machine]

learning

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

A
c
c
e
le

ra
ti
n

g

L
L

M

re
q

u
ir
e

s

m
a
c
h

in
e

KV Cache

Acc.

LLM

requires

machine

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Matrix

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

KV Cache Dynamically Grows and Shrinks

25

[Accelerating LLM requires machine] learning

learning systems

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

A
c
c
e
le

ra
ti
n

g

L
L

M

re
q

u
ir
e

s

m
a
c
h

in
e

KV Cache
le

a
rn

in
g

Layer 3

Layer 2
learning

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Matrix
le

a
rn

in
g

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

KV Cache Dynamically Grows and Shrinks

26

[Accelerating LLM requires machine] learning systems

learning systems optimizations

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

A
c
c
e
le

ra
ti
n

g

L
L

M

re
q

u
ir
e

s

m
a
c
h

in
e

KV Cache
le

a
rn

in
g

s
y
s
te

m
s

Layer 3

Layer 2
systems

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Matrix
le

a
rn

in
g

s
y
s
te

m
s

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

KV Cache Dynamically Grows and Shrinks

27

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

A
c
c
e
le

ra
ti
n

g

L
L

M

re
q

u
ir
e

s

m
a
c
h

in
e

KV Cache
le

a
rn

in
g

s
y
s
te

m
s

o
p

ti
m

iz
a
ti
o

n
s

Layer 3

Layer 2
optimizations

A
c
c
.

L
L

M

re
q
u
ir

e
s

m
a
c
h

in
e

Attention Matrix
le

a
rn

in
g

s
y
s
te

m
s

o
p

t.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Static KV Cache Management Wastes Memory

• Pre-allocates contiguous space of memory to the request’s maximum
length

• Memory fragmentation

• Internal fragmentation due to unknown output length

• External fragmentation due to non-uniform per-request max lengths

28

Artificial
Intellige

nce
is <resv> <resv> … <resv> <resv>

3 KV Cache slots for

request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

… … Alan Turing …

Request BExternal frag.

(Internal frag.)

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Significant Memory Waste in KV Cache

• Only 20-40% of KV cache is utilized to store actual token states

29slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

vllm

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PagedAttention

• Application-level memory paging and virtualization for KV cache

30

Page 0

Page 1

Page 2

Page 3

Page 4

Process

A
Process

B

Physical Memory

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

Request

A
Request

B

KV Cache

Memory management in OS PagedAttention

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Paging KV Cache Space into KV Blocks*

• KV block is a fixed-size contiguous
chunk of memory that stores KV
states from left to right

31

Artificial Intelligence is the

KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache

Space

* The term ``block’’ is overloaded in PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Virtualizing KV Cache

32

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention with Virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

33

Key insight: attention is associative and commutative

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Management with PagedAttention

34

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Management with PagedAttention

35

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Management with PagedAttention

36

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Management with PagedAttention

37

Request

A

Alan Turing is a

computer scientist and
mathem

atician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Management with PagedAttention

38

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Allocated on demand

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Memory Efficiency of PagedAttention

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

39
vllm

Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal

fragmentation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Techniques for Optimizing Attention

• FlashAttention: tiling to reduce GPU global memory access

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement

40

	Slide 1: 15-442/15-642: Machine Learning Systems Attention Optimizations
	Slide 2: Attention: O = Softmax(QKT) V
	Slide 3: Outline: Attention Optimizations
	Slide 4: Revisit: GPU Memory Hierarchy
	Slide 5: FlashAttention
	Slide 6: Tiling: Decompose Large Softmax into smaller ones by Scaling
	Slide 7: Tiling
	Slide 8: Recomputation: Backward Pass
	Slide 9: FlashAttention: Threadblock-level Parallelism
	Slide 10: FlashAttention: Threadblock-level Parallelism
	Slide 11: FlashAttention: Threadblock-level Parallelism
	Slide 12: FlashAttention: Warp-Level Parallelism
	Slide 13: FlashAttention: 2-4x speedup, 10-20x memory reduction
	Slide 14: Outline: Attention Optimizastions
	Slide 15: Generative LLM Inference: Autoregressive Decoding
	Slide 16: Generative LLM Inference: Autoregressive Decoding
	Slide 17: Generative LLM Inference: Autoregressive Decoding
	Slide 18: Generative LLM Inference: Autoregressive Decoding
	Slide 19: Can We Apply FlashAttention to LLM Inference?
	Slide 20: FlashAttention Processes K/V Sequentially
	Slide 21: Flash-Decoding Parallelizes Across Keys/Values
	Slide 22: Flash-Decoding is up to 8x faster than prior work
	Slide 23: Outline: Attention Optimizastions
	Slide 24: KV Cache Dynamically Grows and Shrinks
	Slide 25: KV Cache Dynamically Grows and Shrinks
	Slide 26: KV Cache Dynamically Grows and Shrinks
	Slide 27: KV Cache Dynamically Grows and Shrinks
	Slide 28: Static KV Cache Management Wastes Memory
	Slide 29: Significant Memory Waste in KV Cache
	Slide 30: PagedAttention
	Slide 31: Paging KV Cache Space into KV Blocks*
	Slide 32: Virtualizing KV Cache
	Slide 33: Attention with Virtualized KV Cache
	Slide 34: Memory Management with PagedAttention
	Slide 35: Memory Management with PagedAttention
	Slide 36: Memory Management with PagedAttention
	Slide 37: Memory Management with PagedAttention
	Slide 38: Memory Management with PagedAttention
	Slide 39: Memory Efficiency of PagedAttention
	Slide 40: Recap: Techniques for Optimizing Attention

