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Attention: O = Softmax(QKT) V

2

Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x d

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

A = mask(A)
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Outline: Attention Optimizations

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference

• Flash Decoding

• PagedAttention

3

These techniques are highly tailored for GPUs
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Revisit: GPU Memory Hierarchy
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Per-block shared memory 

(readable/writable by all 

threads in a block)

Device global memory 

(readable/writable by all 

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)
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FlashAttention

Key idea: compute attention by blocks to reduce global memory 
access

Two main Techniques:

5

1. Tiling: restructure algorithm to load query/key/value block by 

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute 

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)
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Tiling: Decompose Large Softmax into smaller ones by 
Scaling

1. Load inputs by blocks from global to 
shared memory

2. On chip, compute attention output 
wrt the block

3. Update output in device memory by 
scaling

6

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2 = 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 , 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 + 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2
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Tiling

7Animation credit: Francisco Massa
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Recomputation: Backward Pass

By storing softmax normalization factors 
from forward (size N), recompute attention in 
the backward from inputs in shared memory

8

Attention Standard FlashAttention

GFLOPs 66.6 75.2

Global mem access 40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs
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FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

9
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FlashAttention: Threadblock-level 
Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

• Step 2: assign different queries to 
different thread blocks (Why?)

10

Thread blocks cannot communicate; cannot perform 

softmax when partitioning keys/values
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FlashAttention: Threadblock-level Parallelism

11

Queries

Keys/Values

Block 1

Block 2

Block 3

Block 4

Block 5

Do we need to handle workload imbalance? 

No. GPU scheduler automatically loads the next block 

once the current one completes.

Forward pass
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FlashAttention: Warp-Level Parallelism

• How to partition FlashAttention across warps within a thread block?

12

Splitting across K/V requires 

communication to add results

Splitting across Q avoids 

communications
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FlashAttention: 2-4x speedup, 10-20x memory reduction

13

Memory linear in sequence length
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Outline: Attention Optimizastions

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

• Flash Decoding

• PagedAttention

14
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Generative LLM Inference: Autoregressive Decoding

15

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Input Prompt:
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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learning systems optimizations

learning systems optimizations [EOS]
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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learning systems optimizations

learning systems optimizations [EOS]
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Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid 
recomputation

18
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Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries 
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the 
decoding phase

19
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FlashAttention Processes K/V Sequentially

20

Inefficient for requests with long context (many keys/values)
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Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

21

Key insight: attention is associative and commutative
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Flash-Decoding is up to 8x faster than prior work 

22
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Outline: Attention Optimizastions

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

• Flash-Decoding

• PagedAttention

23
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KV Cache Dynamically Grows and Shrinks

24

[Accelerating LLM requires machine]
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning

learning systems
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning systems

learning systems optimizations
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]
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Static KV Cache Management Wastes Memory

• Pre-allocates contiguous space of memory to the request’s maximum 
length

• Memory fragmentation

• Internal fragmentation due to unknown output length

• External fragmentation due to non-uniform per-request max lengths

28

Artificial
Intellige

nce
is <resv> <resv> … <resv> <resv>

3 KV Cache slots for 

request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

… … Alan Turing …

Request BExternal frag.

(Internal frag.)

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Significant Memory Waste in KV Cache

• Only 20-40% of KV cache is utilized to store actual token states

29slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

vllm
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PagedAttention

• Application-level memory paging and virtualization for KV cache

30

Page 0

Page 1

Page 2

Page 3

Page 4

Process

A
Process

B

Physical Memory

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

Request

A
Request

B

KV Cache

Memory management in OS PagedAttention

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Paging KV Cache Space into KV Blocks*

• KV block is a fixed-size contiguous 
chunk of memory that stores KV 
states from left to right

31

Artificial Intelligence is the

KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache 

Space

* The term ``block’’ is overloaded in PagedAttention
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Virtualizing KV Cache

32

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Attention with Virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

33

Key insight: attention is associative and commutative
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Memory Management with PagedAttention

34

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

35

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

36

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

37

Request

A

Alan Turing is a

computer scientist and
mathem

atician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

38

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Allocated on demand
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Memory Efficiency of PagedAttention

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

39
vllm

Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal 

fragmentation
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Recap: Techniques for Optimizing Attention

• FlashAttention: tiling to reduce GPU global memory access 

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s memory 
requirement

40
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