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Challenges:

» Large intermediate results

« Repeated reads/writes from GPU device memory

« Cannot scale to long sequences due to O(N”2) intermediate results



Outline: Attention Optimizations

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference

* Flash Decoding
« PagedAttention

These techniques are highly tailored for GPUs



Revisit: GPU Memory Hierarchy

Grid 0
Indt(%o) M(gﬂ) Block (2, 0)
_ Device global memory
Block (0,1) Block(1,1) Block(2,1) (readable/writable by all
Per-block shared memory threads)
(readable/writable by all
threads in a block)

19 TB/s (20 MB)

1.5 TB/s (80 GB)



i A = softmax(QKT)
FlashAttention EEEEEEEE

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:
1. Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

2. Recomputation: don't store attention matrix from forward, recompute
it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with |O-Awareness



Tiling: Decompose Large Softmax into smaller ones by
Scaling

Outer Loop
1. Load inputs by blocks from global to K':dx N
shared memory _ Copy Block to SRAN!
. . Outer L
2. On chip, compute attention output T
wrt the block _
i ] 0o T1
3. Upd_ate output in device memory by 3 computeBlock ' € 2
scaling = on SRAM al
E 8

Output to HEM

softmax([Aq, Az]) = laxsoftmax (A1), BXsoftmax(A;)] SR Nocd

Inner Loop

V. ;
softmax([41, A2]) [Vll = axsoftmax(A)V; + BXsoftmax(4;)V, FlashAttention
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Animation credit: Francisco Massa



Recomputation: Backward Pass

By storing softmax normalization factors
from forward (size N), recompute attention in
the backward from inputs in shared memory

M Standard FlashAttention

GFLOPs
Global mem access
Runtime

66.6
40.3 GB
41.7 ms

75.2
4.4 GB
7.3 ms

Outer Loop
.

K:dxN
Copy Block to SRAM
Outer Loop V:N Xd
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Inner Loop

FlashAttention

Speed up backward pass with increased FLOPs



FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

« Step 1: assign different heads to different

thread blocks (16-64 heads)

Outer Loop
i

K:dxN
Copy Block to SRAM
Q:Nxd Quterloop V:N Xd

>

Compute Block
on SRAM

Inner Loop
doo 421nQ

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention



FlashAttention: Threadblock-level Silfarieap

. K:dxN
Para”ellsm ! Copy Block to SRAM
Q:Nxd Quterioop V:NXd

How to partition FlasshAttention across & SR £
thread blocks? 5: I S !
(An A100 has 108 SMMs -> 108 thread 3 !B Compute Block 2
blocks) Al =t BniHEM -
E O 5
I
« Step 1: assign different heads to different v . .
thread blocks (16-64 heads) ; GuiputitoliRM
sm(QK")V: N x
« Step 2: assign different queries to — =
different thread blocks (Why?) Eladhidtenilon

Thread blocks cannot communicate; cannot perform
softmax when partitioning keys/values
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FlashAttention: Threadblock-level Parallelism

Keys/Values

Block 1
Block 2
Block 3

Block 4
Block 5

Queries

Forward pass

Do we need to handle workload imbalance?

No. GPU scheduler automatically loads the next block
once the current one completes.



FlashAttention: Warp-Level Parallelism

« How to partition FlashAttention across warps within a thread block?

KT KT
ENs ("7 (" T 1 y
| Warpl | Warp2 | Warp3 | Warp4 | v Warp 1-4
/I‘ ______ P AT 7 |74
Q e e Q
Warp 1-4 Warp 1 Warp 1
I
Wete e | Warp2 Warp 1-4
______ 1
Warp 3 Warp 3
Warp 4
______ Warp 4
Accessedbyallwarps e
B A Accessed by all warps

_____
_____

: Split across different warps

_____

(a) FLASHATTENTION (b) FLASHATTENTION-2

Splitting across K/V requires Splitting across Q avoids @
communication to add results communications
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FlashAttention: 2-4x speedup,

Attention forward + backward speed (A100 80GB SXM4)

I Pytorch

500 I FlashAttention a
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Sequence length

10-20x memory reduction

FlashAttention Memory Reduction
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Sequence Length

B Dropout + Masking

Memory linear in sequence length
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Outline: Attention Optimizastions

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)
* Flash Decoding
« PagedAttention
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Generative LLM Inference: Autoregressive Decoding

Input Prompt:  [Accelerating LLM requires machine] :»> learning > systems :»>optimizations

lter0 | Iter1 i Iter2 i  Iter3

VR B Vb
Layer 1 Layer 1 Layer 1 Layer 1
SN S T Y S
Layer 2 Layer 2 Layer 2 Layer 2
U ! S
Layer 3 Layer 3 Layer 3 Layer 3
Voo v 4 '
Outputs:  learning - systems optlmlzatlons [EOS]
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Attention Score

learning
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LLM|o
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learning | ™

Decoding Phase




Generative LLM Inference: Autoregressive Decoding

(O-th iteration):
* Process all input tokens at once
(all other iterations):

* Process a single token generated from previous iteration
« Use attention keys & values of all previous tokens

» Key-value cache:

« Save attention keys and values for the following iterations to avoid
recomputation
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Can We Apply FlashAttention to LLM Inference?

Attention Comp.

Acc.
LLM
requires
machine

Acc

LLM
requires
machine

Pre-filling phase:

* Yes, compute different queries
using different thread blocks/warps

Attention Comp.

learning

Acc
LLM
requires

machine
learning

Decoding phase:

* No, there is a single query in the
decoding phase
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FlashAttention Processes K/V Sequentially

Values

Keys

Queries !

Output

Inefficient for requests with long context (many keys/values)
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Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Values

Keys

Queries !

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

Key insight: attention is associative and commutative
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Flash-Decoding is up to 8x faster than prior work

tok/s

Codellama-34b end-to-end decoding speed [bs=1, MP=4]

50

40

30 A

20 A

10 A

pytorch primitives
flash-attention

FT attention
flash-decoding

10° 104
Prompt length
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Outline: Attention Optimizastions

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)
» Flash-Decoding
 PagedAttention
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] ;> learning
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] ;> learning  :> systems
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]
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Static KV Cache Management \WWastes Memory

0 3 A's max length

S ' e ' ~ '
3 KV Cache slots for Pre-allocated slots for A’'s output External frag. Request B
request A's prompt (Internal frag.)

* Pre-allocates contiguous space of memory to the request’'s maximum
length

« Memory fragmentation
* Internal fragmentation due to unknown output length
- External fragmentation due to non-uniform per-request max lengths

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Significant Memory Waste in KV Cache

* Only 20-40% of KV cache is utilized to store actual token states

B KV Cache 1 Internal frag. M External frag. & Others
100 -

80 A
60 A
40 A

20 A

KV Cache space usage (%)

Orca Orca Orca vilm
(Max) (Pow2) (Oracle)

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention
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PagedAttention

 Application-level memory paging and virtualization for KV cache

Memory management in OS

Page 0

Process Page 1
Page 2
Page 3

Page 4

Physical Memory

Process
B

PagedAttention

Request
A

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

KV Cache

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Request
B
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Paging KV Cache Space into KV Blocks*

« KV block is a fixed-size contiguous
chunk of memory that stores KV
states from left to right

* The term ""block” is overloaded in PagedAttention

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

KV blocks

Block size = 4
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Virtualizing KV Cache

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
block 2
Logical KV blocks Block table block 3
block 0| Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist ! ! block 5
~ 1 . oc
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Attention with Virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention on the fly

KV Cache
Block 1 [computer| scientist and nrqnaa,:'idgi;
Block table
Physical :
# Filled
block humber
5 4 Block 2 [renowned| for
Query for \i 0 4
2 2
Block 0 Alan Turing is a

Key insight: attention is associative and commutative



Memory Management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist ! 4 block 5
\ 1 5 oC
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Memory Management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist | and ! 4 block 5
\ 1 5 oC
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Memory Management with PagedAttention

Physical KV blocks

RequeSt block 0
A
block 1| computer | scientist| and
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist and ! 4 block 5
T 1 3 oc
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention



Memory Management with PagedAttention

Request

Completion: “and_mathematician”

block 0

block 1

block 2

block 3

Logical KV blocks

Prompt: “Alan Turing is a computer scientist”

Alan Turing is a
. mathem

computer | scientist and . .
atician

Block table
Physical ;
block number # Filled
7 4
1 3

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical KV blocks

computer

scientist

and

mathem
atician

Alan

Turing

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician renowned”

Logical KV blocks

Block table
; i Physical ;
block 0 | Alan Turing is a \ block nurmber | 7 Filled
N mathema 7 4
block 1 | computer | scientist and o | 1 p
block 2 |renowned > 5 1

block 3

block 0

block 1

block 2

block 3

block 4
r——
| block 5
|

block 6

block 7

Physical KV blocks

computer | scientist| and mgthem
atician
Allocated on demand
renowned
Alan Turing is a

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Efficiency of PagedAttention

Minimal internal fragmentation

« Only happens at the last block of a sequence
» # wasted tokens / seq < block size

No external fragmentation

B KV Cache " Internal frag. M External frag. & Others
100

80 -
60 -

40 A

KV Cache space usage (%)

Orca Orca Orca

(Max) (Pow?2) (Oracle) viim

Alan

Turing

a

computer

scientist

and

mathemati
cian

renowned

.

Y

Internal

fragmentation
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Recap: Techniques for Optimizing Attention

» FlashAttention: tiling to reduce GPU global memory access

* Auto-regressive Decoding: pre-filling and decoding phases, KV cache

» FlashDecoding: improving attention’s parallelism by splitting keys/values

- PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement
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