15-442/15-642: Machine Learning Systems

Attention Optimizations

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

3/12/24

Attention: O = Softmax(QKT') V

Q:Nxd K:Nxd A=QKT:NxN A = mask(A) A = softmax(A) :NxN V:Nxd O=AV:Nxd
]] EEEEEEEN]]
]] HEEEEEEEN i]
]] HEEEEEEE L]
H % H . IEEEEEEN - EEEN]
]] EEEEEEEN HEEEE]
]] HEEEEEEEN HEEEER]
]] HEEEEEEE HEEEEEN HEEEEE]
Il N HEEEEEEEN HEEEEEEE HEEEEEEE Il

Challenges:

» Large intermediate results

« Repeated reads/writes from GPU device memory

« Cannot scale to long sequences due to O(N”2) intermediate results

Outline: Attention Optimizations

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference

* Flash Decoding
« PagedAttention

These techniques are highly tailored for GPUs

Revisit: GPU Memory Hierarchy

Grid 0
Indt(%o) M(gﬂ) Block (2, 0)
_ Device global memory
Block (0,1) Block(1,1) Block(2,1) (readable/writable by all
Per-block shared memory threads)
(readable/writable by all
threads in a block)

19 TB/s (20 MB)

1.5 TB/s (80 GB)

i A = softmax(QKT)
FlashAttention EEEEEEEE

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:
1. Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

2. Recomputation: don't store attention matrix from forward, recompute
it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with |O-Awareness

Tiling: Decompose Large Softmax into smaller ones by
Scaling

Outer Loop
1. Load inputs by blocks from global to K':dx N
shared memory _ Copy Block to SRAN!
. . Outer L
2. On chip, compute attention output T
wrt the block _
i] 0o T1
3. Upd_ate output in device memory by 3 computeBlock ' € 2
scaling = on SRAM al
E 8

Output to HEM

softmax([Aq, Az]) = laxsoftmax (A1), BXsoftmax(A;)] SR Nocd

Inner Loop

V. ;
softmax([41, A2]) [Vll = axsoftmax(A)V; + BXsoftmax(4;)V, FlashAttention
2

T| I | N g Keys (NxK)
AR R RRR RO

Queries (NxK) Output Values
(NxK) (NxK)

Animation credit: Francisco Massa

Recomputation: Backward Pass

By storing softmax normalization factors
from forward (size N), recompute attention in
the backward from inputs in shared memory

M Standard FlashAttention

GFLOPs
Global mem access
Runtime

66.6
40.3 GB
41.7 ms

75.2
4.4 GB
7.3 ms

Outer Loop
.

K:dxN
Copy Block to SRAM
Outer Loop V:N Xd

>

2 I ﬂl.:—: ______ A
i
=l
§| 1l rl ------------ T
o cl 10 o
o c
S - Compute Block =
e N on SRAM al
& Copy | o)
= | A2
|
|
L

— o]

Output to HBEM
sm(QK")V: N xd

Inner Loop

FlashAttention

Speed up backward pass with increased FLOPs

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

« Step 1: assign different heads to different

thread blocks (16-64 heads)

Outer Loop
i

K:dxN
Copy Block to SRAM
Q:Nxd Quterloop V:N Xd

>

Compute Block
on SRAM

Inner Loop
doo 421nQ

Output to HEM
sm(QK"V: N xd

Inner Loop

FlashAttention

FlashAttention: Threadblock-level Silfarieap

. K:dxN
Para”ellsm ! Copy Block to SRAM
Q:Nxd Quterioop V:NXd

How to partition FlasshAttention across & SR £
thread blocks? 5: I S !
(An A100 has 108 SMMs -> 108 thread 3 !B Compute Block 2
blocks) Al =t BniHEM -
E O 5
I
« Step 1: assign different heads to different v . .
thread blocks (16-64 heads) ; GuiputitoliRM
sm(QK")V: N x
« Step 2: assign different queries to — =
different thread blocks (Why?) Eladhidtenilon

Thread blocks cannot communicate; cannot perform
softmax when partitioning keys/values

10

FlashAttention: Threadblock-level Parallelism

Keys/Values

Block 1
Block 2
Block 3

Block 4
Block 5

Queries

Forward pass

Do we need to handle workload imbalance?

No. GPU scheduler automatically loads the next block
once the current one completes.

FlashAttention: Warp-Level Parallelism

« How to partition FlashAttention across warps within a thread block?

KT KT
ENs ("7 (" T 1 y
| Warpl | Warp2 | Warp3 | Warp4 | v Warp 1-4
/I‘ ______ P AT 7 |74
Q e e Q
Warp 1-4 Warp 1 Warp 1
I
Wete e | Warp2 Warp 1-4
______ 1
Warp 3 Warp 3
Warp 4
______ Warp 4
Accessedbyallwarps e
B A Accessed by all warps

: Split across different warps

(a) FLASHATTENTION (b) FLASHATTENTION-2

Splitting across K/V requires Splitting across Q avoids @
communication to add results communications

12

FlashAttention: 2-4x speedup,

Attention forward + backward speed (A100 80GB SXM4)

I Pytorch

500 I FlashAttention a
. mm xformers 182 189 %
u Il FlashAttention Triton 4]
8 B FlashAttention-2 g
9 150 A =
[T &
E g
- 100 - 3
@ k5
8 o
) -
50 A o

&

[0]

=

512 1k 2k 4k 8k 16k
Sequence length

10-20x memory reduction

FlashAttention Memory Reduction

20

15 A

10 -

128 256 512 1024 2048 4096
Sequence Length

B Dropout + Masking

Memory linear in sequence length

13

Outline: Attention Optimizastions

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)
* Flash Decoding
« PagedAttention

14

Generative LLM Inference: Autoregressive Decoding

Input Prompt: [Accelerating LLM requires machine] :»> learning > systems :»>optimizations

lter0 | Iter1 i Iter2 i Iter3

VR B Vb
Layer 1 Layer 1 Layer 1 Layer 1
SN S T Y S
Layer 2 Layer 2 Layer 2 Layer 2
U ! S
Layer 3 Layer 3 Layer 3 Layer 3
Voo v 4 '
Outputs: learning - systems optlmlzatlons [EOS]

Attention Score

Acc. | 1
LLM[(2|0
requires| 5|13
machine| 2 (011
g 8 2
< 1 5 S
3 ®
s £

Pre-filling Phase

Attention Score

learning

Acc.|—=
LLM|o
requires|~
machine [=~
learning | ™

Decoding Phase

Generative LLM Inference: Autoregressive Decoding

(O-th iteration):
* Process all input tokens at once
(all other iterations):

* Process a single token generated from previous iteration
« Use attention keys & values of all previous tokens

» Key-value cache:

« Save attention keys and values for the following iterations to avoid
recomputation

18

Can We Apply FlashAttention to LLM Inference?

Attention Comp.

Acc.
LLM
requires
machine

Acc

LLM
requires
machine

Pre-filling phase:

* Yes, compute different queries
using different thread blocks/warps

Attention Comp.

learning

Acc
LLM
requires

machine
learning

Decoding phase:

* No, there is a single query in the
decoding phase

19

FlashAttention Processes K/V Sequentially

Values

Keys

Queries !

Output

Inefficient for requests with long context (many keys/values)

20

Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Values

Keys

Queries !

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

Key insight: attention is associative and commutative

21

Flash-Decoding is up to 8x faster than prior work

tok/s

Codellama-34b end-to-end decoding speed [bs=1, MP=4]

50

40

30 A

20 A

10 A

pytorch primitives
flash-attention

FT attention
flash-decoding

10° 104
Prompt length

22

Outline: Attention Optimizastions

Part 1: LLM Training
* FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)
» Flash-Decoding
 PagedAttention

23

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]

)) Iter O
Attention Matrix |
Layer 1
Acc. ’
LLM }
requires Layer 2
machine ’
3 E g .g Layer 3
< a5 <
o 8 '
=
Outputs: learning
IIIIIIlI »
o))
= ®
T =
KV Cache 0 =
[} O
S o
<

24

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] ;> learning

lter0 | Iter 1

v v
Attention Matrix Layer1 | Layer1
. R
earning H: B ,
Layer 2 :
g=g822 S
< 115 £ ¢ l : L
o8 ® :
 c o Layer3 : Layer3
[A
Outputs: learning - systems
nlIIIlu R |IIII||| R
%
= 2 @)
© o =
KV Cache 0 = S
[} g ©
S D o
<C

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] ;> learning :> systems

Iter O Iter 1 Iter 2

\ v y
Attention Matrix Layer1 | Layer1 | Layer1
voor |
systems . , :) , E) ,
ayer2 : Layer : ayer
§=8g2e R A
<2135 E8 L 2 R 2R R
O g © g
o 3 Layer3 : Layer3 : Layer3
I
Outputs: learning -~ systems -+ optimizations
nlIIIlu R |IIII||| . Mhh
S
= 24 (@)
© o =
KV Cache ko = £
[} g ©
S 0 kS
<

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]

Attention Matrix

optimizations

Acc

LLM
requires
machine

learning
systems

KV Cache

opt.

requires

o
c
=
©
| .
Q@
0,
O
O
<

Iter O
v

Layer 1

!

Layer 2 E

|

Layer 3 ;

|

learning

:> learning

lter 1
v

Layer 1

!

Layer 2

{

Layer 3
v

systems

learning

> systems :»>optimizations

lter 2
v

Layer 1

!

Layer 2

'

Layer 3
'

--Eoptimizations-E

[

optimizations

lter 3
v

Layer 1

!

Layer 2

|

Layer 3

¥
[EOS]

27

Static KV Cache Management \WWastes Memory

0 3 A's max length

S ' e ' ~ '
3 KV Cache slots for Pre-allocated slots for A’'s output External frag. Request B
request A's prompt (Internal frag.)

* Pre-allocates contiguous space of memory to the request’'s maximum
length

« Memory fragmentation
* Internal fragmentation due to unknown output length
- External fragmentation due to non-uniform per-request max lengths

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Significant Memory Waste in KV Cache

* Only 20-40% of KV cache is utilized to store actual token states

B KV Cache 1 Internal frag. M External frag. & Others
100 -

80 A
60 A
40 A

20 A

KV Cache space usage (%)

Orca Orca Orca vilm
(Max) (Pow2) (Oracle)

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

29

PagedAttention

 Application-level memory paging and virtualization for KV cache

Memory management in OS

Page 0

Process Page 1
Page 2
Page 3

Page 4

Physical Memory

Process
B

PagedAttention

Request
A

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

KV Cache

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Request
B

30

Paging KV Cache Space into KV Blocks*

« KV block is a fixed-size contiguous
chunk of memory that stores KV
states from left to right

* The term ""block” is overloaded in PagedAttention

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

KV blocks

Block size = 4

31

Virtualizing KV Cache

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
block 2
Logical KV blocks Block table block 3
block 0| Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist ! ! block 5
~ 1 . oc
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Attention with Virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention on the fly

KV Cache
Block 1 [computer| scientist and nrqnaa,:'idgi;
Block table
Physical :
Filled
block humber
5 4 Block 2 [renowned| for
Query for \i 0 4
2 2
Block 0 Alan Turing is a

Key insight: attention is associative and commutative

Memory Management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist ! 4 block 5
\ 1 5 oC
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Memory Management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist | and ! 4 block 5
\ 1 5 oC
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Memory Management with PagedAttention

Physical KV blocks

RequeSt block 0
A
block 1| computer | scientist| and
Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical KV blocks Block table block 3
block 0 | Alan Turing is a \ bIO'ZEy:L‘?Ler # Filled block 4
block 1 | computer | scientist and ! 4 block 5
T 1 3 oc
block 2 - - block 6
block 3 block 7| Alan Turing is

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

Memory Management with PagedAttention

Request

Completion: “and_mathematician”

block 0

block 1

block 2

block 3

Logical KV blocks

Prompt: “Alan Turing is a computer scientist”

Alan Turing is a
. mathem

computer | scientist and . .
atician

Block table
Physical ;
block number # Filled
7 4
1 3

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical KV blocks

computer

scientist

and

mathem
atician

Alan

Turing

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

37

Memory Management with PagedAttention

Request
A

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician renowned”

Logical KV blocks

Block table
; i Physical ;
block 0 | Alan Turing is a \ block nurmber | 7 Filled
N mathema 7 4
block 1 | computer | scientist and o | 1 p
block 2 |renowned > 5 1

block 3

block 0

block 1

block 2

block 3

block 4
r——
| block 5
|

block 6

block 7

Physical KV blocks

computer | scientist| and mgthem
atician
Allocated on demand
renowned
Alan Turing is a

slides from vlim: Efficient Memory Management for Large Language Model Serving with PagedAttention

38

Memory Efficiency of PagedAttention

Minimal internal fragmentation

« Only happens at the last block of a sequence
» # wasted tokens / seq < block size

No external fragmentation

B KV Cache " Internal frag. M External frag. & Others
100

80 -
60 -

40 A

KV Cache space usage (%)

Orca Orca Orca

(Max) (Pow?2) (Oracle) viim

Alan

Turing

a

computer

scientist

and

mathemati
cian

renowned

.

Y

Internal

fragmentation

39

Recap: Techniques for Optimizing Attention

» FlashAttention: tiling to reduce GPU global memory access

* Auto-regressive Decoding: pre-filling and decoding phases, KV cache

» FlashDecoding: improving attention’s parallelism by splitting keys/values

- PagedAttention: paging and virtualization to reduce KV cache’s memory
requirement

40

