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Global memory

Shared memory

block0

thread0

Registers

thread1

Registers …

block3

…

thread8

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080  10GB
RTX3090  24GB
A100        40/80 GB

Recap: GPU memory hierarchy
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input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

A simplified view of a typical computational graph for training, 
weights are omitted and implied in the grad steps.

Sources of memory consumption
• Model weights
• Optimizer states
• Intermediate activation values

Optimizer states

𝑤! 𝑤" 𝑢! 𝑢"

Sources of memory consumption
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input relu linear losslinear

We only need O(1) memory for computing the final output of a N layer deep network
by cycling through two buffers

Techniques for Memory Saving, Inference Only



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

7

Because the need to keep intermediate value around (checkpoint) for the gradient steps.
Training a 𝑁-layer neural network would require 𝑂 𝑁 	memory. 

We will use the following simplified view to combine 
gradient and forward computation 

input relu linear loss

linear-grad

label

loss-gradrelu-grad

linear

linear-grad

Activation Memory Cost for Training
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Step 0:

Step 1:

Step 2:

• Only checkpoint colored nodes (step 0)
• Recompute the missing intermediate nodes in small segments (step 1, 2)

Checkpointing Techniques in AD
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For a 𝑁 layer neural network, 
if we checkpoint every 𝐾 layers

Forward computation

Gradient per segment
with re-computation

𝑀𝑒𝑚𝑜𝑟𝑦	𝑐𝑜𝑠𝑡 = 𝑂
𝑁
𝐾

+ 𝑂(𝐾)

Checkpoint cost Re-computation cost

Pick 𝐾 = 𝑁

Sublinear Memory Cost
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float16

source: wikipedia

bfloat16

More fraction bits

Less easy to overflow
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linear

f16

𝑤!
f16

f32
softmax

f32

● Some layers are more sensitive to 
dynamic range

● Common issues: aggregation of 
a lot of entries

● Mixed precision: different 
input/output/accumulation types
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Recap: AllReduce Abstraction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]    

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]    

Worker 0 Worker 1

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()
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Ring based Reduction

● Form a logical ring between nodes

● Streaming aggregation
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Ring based Reduction

Each node have correctly reduced result of one segment!
This is called reduce_scatter
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Reduce Scatter Abstraction

result = reduce_scatter(float buffer[size])Interface

a = [1, 2, 3, 4]    

b = comm.allreduce(a, op=sum)

a = [1, 0, 1, 1]    

Worker 0 Worker 1

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2] assert b == [4, 5]

comm = communicator.create() comm = communicator.create()
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Ring based Reduction: Allgather phase

Question: What is 
Time Complexity of 
Ring based Reduction
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Allgather abstraction

result = allgather(float buffer[size])Interface

a = [1, 2]    

b = comm.allgather(a)

a = [3, 4]    

Worker 0 Worker 1

b = comm.allgather(a)

Running Example

assert b == [1, 2, 3, 4] assert b == [1, 2, 3, 4]

comm = communicator.create() comm = communicator.create()
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Overall Relations
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Combine both we 
get Allreduce
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FSDP: Fully Sharded Data Parallel

28Core idea is equivalent to ZeRO3

Forward pass

Backward pass

W

W

W

W

Weights shard on 
different GPUs

Allgather
W

Full weight
replicated
in each GPU

Forward 
(local)

Activation
shard

Next
Activation 

Shard

Previous
Gradient 

Shard

Backward 
(local)

Drop full weight 
after forward

Gsum

Gsum

Gsum

Gsum

Gradients shards
on different GPUs

Reduce 
Scatter

G 

Local W gradient 
on each data slice


