15-442/15-642: Machine Learning Systems
Memory Optimizations
Spring 2024

Tiangi Chen and Zhihao Jia
Carnegie Mellon University

2/28/24

Outline

Activation Checkpointing and Rematerialization

Mixed Precision

Fully Sharded Data Parallelism

Outline

Activation Checkpointing and Rematerialization

Recap: GPU memory hierarchy

blockO
threadO thread1
Registers Registers

thread8

Shared memory

block3

Global memory

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080 10GB
RTX3090 24GB

A100 40/80 GB

Sources of memory consumption

A simplified view of a typical computational graph for training,
weights are omitted and implied in the grad steps.

input linear relu linear loss

» n [
» » »

Sources of memory consumption
abel . I\/qulellwe|ghts
* Optimizer states

<
<«

P <
< <«

* |ntermediate activation values

linear-grad relu-grad linear-grad loss-grad

Optimizer states

Techniques for Memory Saving, Inference Only

input linear relu linear loss

O

We only need O(1) memory for computing the final output of a N layer deep network
by cycling through two buffers

\ 4
A\ 4

Activation Memory Cost for Training

relu linear loss

input linear

n

label

<& P
< <

linear-grad relu-grad linear-grad loss-grad

Because the need to keep intermediate value around (checkpoint) for the gradient steps.
Training a N-layer neural network would require O(N) memory.

We will use the following simplified view to combine
gradient and forward computation

> —> —_—
O—l = ——]

Checkpointing Techniques in AD

Step O:

Step 1:

Step 2:

—

—{

==

* Only checkpoint colored nodes (step 0)

« Recompute the missing intermediate nodes in small segments (step 1, 2)

Sublinear Memory Cost

\ 4

Forward computation 4,-

Gradient per segment
with re-computation

==

For a N layer neural network, N |
if we checkpoint every K layers Memory cost = () + O(K) Pick K =N

" AN

Checkpoint cost Re-computation cost

Outline

Mixed Precision

10

16bit Floating Points

sign exponent (5 bit)

| I 1
float16 o/ 0 1 1 0 o0 0

15 14 10 9

More fraction bits

sign exponent (8 bit)

fraction (10 bit)

0

0 0

fraction (7 bit)

bfloat16 o 0o 1 1 1 1
15 14

Less easy to overflow

source: wikipedia

11

Mixed Precision

e Some layers are more sensitive to
dynamic range

e Common issues: aggregation of
a lot of entries

o Mixed precision: different
input/output/accumulation types

f16

iiiii

f16

12

Outline

Fully Sharded Data Parallelism

13

Recap: AllIReduce Abstraction

Interface result = allreduce(float buffer[size])

Running Example

Worker O Worker 1
comm = communicator.create() comm = communicator.create()
a =[1, 2, 3] a =[1, 0, 1]
b = comm,a]_]_r\educe(aJ op:sum) b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4] assert b == [2, 2, 4]

Ring based Reduction

e Form alogical ring between nodes

e Streaming aggregation

~. A

Ring based Reduction

|
|
|
|

Ring based Reduction

| i
J |—| L
|
|

—1]

Ring based Reduction

— U |
||| Ul i
| J |—| L
| |

Ring based Reduction

[|
— |00 i

0 | — (0L

I

L

Ring based Reduction

_ 1| [oom] [oo
o0 | pgl g | |ooon
g |oon |opl |

1| ool (oo |

Each node have correctly reduced result of one segment!
This is called reduce scatter

Reduce Scatter Abstraction

Interface result = reduce_scatter(float buffer[size])

Running Example

Worker O

comm = communicator.create()
= [1J 2, 3, 4]

a
b = comm.allreduce(a, op=sum)

assert b == [2, 2]

Worker 1

comm = communicator.create()
a=[1, 0, 1, 1]

b

comm.allreduce(a, op=sum)

assert b == [4, 5]

Ring based Reduction: Allgather phase

I J | | Ui AL
i il] |—|UB00

— WL UL i I
] | — [0f UL il

Ring based Reduction: Allgather phase

0] |oom| [pmm] | OO0
0 S

mg (000 | 0o)—|oma
_ b oo (o] | oo

JUL
JUd

L
JOL

JUL
JACL

JUL
IOt

I
JOLE

i
UL

Ring based Reduction: Allgather phase

AL
JALL
1
J00L

Ring based Reduction: Allgather phase

JUL
JOLE

L
JOL

JUL
JACL

1
IOt

I
JOLE

1
IO

U

UL
1

J00L

Question: What is
Time Complexity of
Ring based Reduction

Allgather abstraction

Interface result = allgather(float buffer[size])

Running Example

Worker O Worker 1
comm = communicator.create() comm = communicator.create()
a=1[1, 2] a = [3, 4]
b = comm.allgather(a) b = comm.allgather(a)

assert b == [1, 2, 3, 4] assert b == [1, 2, 3, 4]

Overall Relations

' ’ El
Reduce Scatter -

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

Combine both we

- get Allreduce
' b
- Allgather

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

27

FSDP: Fully Sharded Data Parallel

Local W gradient
on each data slice

Activation
shard

|

Forward
(local)

Next
Activation
Shard

Drop full weight
after forward

Weights shard on Full weight
different GPUs replicated
in each GPU
Forward pass > w :>
L w |
Allgather
Cw] ™
Previous Backward
Backward pass Gradient (local) :>
Shard

Core idea is equivalent to ZeRO3

G

Gradients shards
on different GPUs

>
Reduce
Scatter [Gsum |

28

