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Recap: GPU memory hierarchy

blockO
threadO thread1
Registers Registers

thread8

Shared memory

block3

Global memory

Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080 10GB
RTX3090 24GB

A100 40/80 GB



Sources of memory consumption

A simplified view of a typical computational graph for training,
weights are omitted and implied in the grad steps.

input linear relu linear loss
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* |ntermediate activation values

linear-grad relu-grad linear-grad loss-grad

Optimizer states



Techniques for Memory Saving, Inference Only

input linear relu linear loss

O

We only need O(1) memory for computing the final output of a N layer deep network
by cycling through two buffers

\ 4
A\ 4




Activation Memory Cost for Training

relu linear loss

input linear

n

label
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linear-grad relu-grad linear-grad loss-grad

Because the need to keep intermediate value around (checkpoint) for the gradient steps.
Training a N-layer neural network would require O(N) memory.

We will use the following simplified view to combine
gradient and forward computation
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Checkpointing Techniques in AD

Step O:

Step 1:

Step 2:
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* Only checkpoint colored nodes (step 0)

« Recompute the missing intermediate nodes in small segments (step 1, 2)




Sublinear Memory Cost

\ 4

Forward computation 4,-

Gradient per segment
with re-computation

==

For a N layer neural network, N |
if we checkpoint every K layers Memory cost = ( ) + O(K) Pick K =N
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Checkpoint cost Re-computation cost
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Mixed Precision
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16bit Floating Points

sign exponent (5 bit)

| I 1
float16 o/ 0 1 1 0 o0 0

15 14 10 9

More fraction bits

sign exponent (8 bit)

fraction (10 bit)

0

0 0

fraction (7 bit)

bfloat16 o 0o 1 1 1 1
15 14

Less easy to overflow

source: wikipedia
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Mixed Precision

e Some layers are more sensitive to
dynamic range

e Common issues: aggregation of
a lot of entries

o Mixed precision: different
input/output/accumulation types

f16

iiiii

f16
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Outline

Fully Sharded Data Parallelism
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Recap: AllIReduce Abstraction

Interface result = allreduce(float buffer[size])

Running Example

Worker O Worker 1
comm = communicator.create() comm = communicator.create()
a =[1, 2, 3] a =[1, 0, 1]
b = comm,a]_]_r\educe(aJ op:sum) b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4] assert b == [2, 2, 4]



Ring based Reduction

e Form alogical ring between nodes

e Streaming aggregation
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Ring based Reduction
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Ring based Reduction
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Ring based Reduction
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Ring based Reduction
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Ring based Reduction
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Each node have correctly reduced result of one segment!
This is called reduce scatter



Reduce Scatter Abstraction

Interface result = reduce_scatter(float buffer[size])

Running Example

Worker O

comm = communicator.create()
= [1J 2, 3, 4]

a
b = comm.allreduce(a, op=sum)

assert b == [2, 2]

Worker 1

comm = communicator.create()
a=[1, 0, 1, 1]

b

comm.allreduce(a, op=sum)

assert b == [4, 5]



Ring based Reduction: Allgather phase
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Ring based Reduction: Allgather phase
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Ring based Reduction: Allgather phase
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Question: What is
Time Complexity of
Ring based Reduction



Allgather abstraction

Interface result = allgather(float buffer[size])

Running Example

Worker O Worker 1
comm = communicator.create() comm = communicator.create()
a=1[1, 2] a = [3, 4]
b = comm.allgather(a) b = comm.allgather(a)

assert b == [1, 2, 3, 4] assert b == [1, 2, 3, 4]



Overall Relations

' ’ El
Reduce Scatter -

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

Combine both we

- get Allreduce
' b
- Allgather

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3
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FSDP: Fully Sharded Data Parallel

Local W gradient
on each data slice

Activation
shard

|

Forward
(local)

Next
Activation
Shard

Drop full weight
after forward

Weights shard on Full weight
different GPUs replicated
in each GPU
Forward pass > w :>
L w |
Allgather
Cw ] ™
Previous Backward
Backward pass Gradient (local) :>
Shard

Core idea is equivalent to ZeRO3

G

Gradients shards
on different GPUs

>
Reduce
Scatter [ Gsum |
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