15-442/15-642: Machine Learning Systems

Parallelization Part 2
(Model and Pipeline Parallelism)

Tiangi Chen
Carnegie Mellon University



Recap: Data Parallelism
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i . : : 3. Aggregate gradients
1. Partition training data into batches 2. Compute the gradients of
| each batch on a GPU across GPUs



Recap: An Issue with Data Parallelism

« Each GPU saves a replica of the
entire model

« Cannot train large models that
exceed GPU device memory

Gradients

Aggregation




Model Parallelism

« Split a model into multiple subgraphs and assign them to different devices
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How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism
 Pipeline model parallelism
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Tensor Model Parallelism

output input parameters

 Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output) Tensor Model Parallcilism z(reduce output) .
y=yl+y



Comparing Data and Tensor Model Parallelism
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Comparing Data and Tensor Model Parallelism
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Comparing Data and Tensor Model Parallelism

Forward Backward Gradients
Processing Propagation Sync
O(B * Cout) O(B * Coyt) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
y=yl+y2 11



Comparing Data and Tensor Model Parallelism

» Data parallelism: 0(Cyyt * Ci)
» Tensor model parallelism (partition output): O(B * C;;,)
« Tensor model parallelism (reduce output): O(B * C,;)

* The best strategy depends on the model and underlying machine
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Combine Data and Model Parallelism

Model parallelism
A

Machine 2

Data parallelism

— Workload partitioning

\ Machine 3 |

Machine 4
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Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products
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CNNs

« A segquence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level | | Mid-level | | High-level | | separable }—
features features features .
classifier

[Zeiler and Fergus 2013] VGG-16 Conv1_1



Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

« Discussion: how to parallelize CNNs?

Tensor model parallelism
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Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

» Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

>—<

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K
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Example: Parallelizing Transformers

» Transformer: attention mechanism for language understanding
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Ashish Vaswani et. al. Attention is all you need.
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A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers
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Input Embeddings (tokens,
positions, ...) & Dropout
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Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(X x A)
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Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.



Parallelizing Transformers

m Model Parallel ®m Model + Data Parallel
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Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 29



How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism

30



An Issue with Model Parallelism

« Under-utilization of compute resources

« Low overall throughput due to resource utilization
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NN Idle
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Pipeline Model Parallelism: Device Utilization

e m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t¢/ t;, to process a forward (backward) micro-batch

mxte (p—1)x(tr+ty) mxty

Device 1 AR AL 112 |3 |4
Device 2 12345678 2 (3|45 9 10111213141516
p Device 3 12345678 314|516 910111213141516 E
Device 4 123456788 4 |5 |6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass |:] Backward Pass

(p—1) = (+ty) p-1
mxt; +mxt, m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Improving Pipeline Parallelism Efficiency

 m : number of micro-batches in a mini-batch
* |ncrease mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

* p: number of pipeline stages

« Decrease pipeline depth
« Caveat: increase stage size
mxty (p—1) = (r+ty) m=ty

l_‘_V_‘_\l | Pipeline flush

Device 1 ENAENCENVAE: 1123 |4 M 910111213141516
Device 2 12345678 2(3|4a]|s5 9 10111213141516
p Device 3 12345678 3|/4|51|6 910111213141516 E
Device 4 123456788 4 5|6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass D Backward Pass
(p—1D=*(t+tp) p-—1

m x tf +m * tb m
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

BubbleFraction =
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Pipeline Model Parallelism: Memory Requirement

« An issue: we need to keep the intermediate activations of all micro-
natches before back propagation

Pipeline flush
Device 1 REPAENNINAL:! 112|134 yA R 910111213141516
Device 2 12345678 2 (3|45 9 10111213141516
Device 3 12345678 3 /4|56 9 10111213141516 a
Device 4 12345678k 4|5 |6 |7 910111213141516“@
Time —— Devices idle

Forward Pass [ ] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline Parallelism with 1F1B Schedule

Doesn’t reduce pipeline bubble

One-Forward-One-Backward in the steady state
Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Can we reduce pipeline bubble?

# in-flight mciro-batches = 8 Pipelineflush

Device 1  [MEAENE M-V AK: 112 |3 |4|5|68 910111213141516

Device 2 12345678 1|12 (3|4 |5 |6 |78 910111213141516

Device 3 12345678 12 |3 |4|5|6]|7 910111213141516 E

Device 4 PR 1 | 2 |3 (4|5 |6 |7 |8 910111213141516“@
Time ——— Devices idle

I rorward Pass [ | Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 1
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Device 3
Device 4

n 9 101112

9 101112

Pipeline parallelism with 1F1B schedule
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Pipeline Parallelism with Interleaved 1F1B Schedule

 Further divide each stage into v sub-stages

* The forward (backward) time of each sub-stage is i (t—b)
v %

DR
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Time ——
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m

Reduce bubble time at the cost iIncreased communication
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Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule
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Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism
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Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

v' Massively parallelizable v
Pros v Require no communication during v’
forward/backward
+ Do not work for models that cannot <«
fit on a GPU
Cons & Do not scale for models with large <

numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot <>
scale to large numbers of GPUs

Need to transfer intermediate

results in forward/backward
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Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism

S | _ O lﬁ\ W" < AT
== Training large models requires combining data/model/pipeline . =
and other parallelization techniques

Data Parallelism Model Parallelism Pipeline Parallelism

v' Massively parallelizable v
Pros v Require no communication during v’
forward/backward
+ Do not work for models that cannot <
fit on a GPU
Cons

+ Do not scale for models with large X
numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot <>
scale to large numbers of GPUs

Need to transfer intermediate

results in forward/backward
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Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism
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https://lwww.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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