15-442/15-642: Machine Learning Systems

Parallelization Part 2 (Model and Pipeline Parallelism)

Tianqi Chen and Zhihao Jia

Carnegie Mellon University

Recap: Data Parallelism

1. Partition training data into batches

- 2. Compute the gradients of each batch on a GPU
- 3. Aggregate gradients across GPUs

Recap: An Issue with Data Parallelism

- Each GPU saves a replica of the entire model
- Cannot train large models that exceed GPU device memory

Model Parallelism

Split a model into multiple subgraphs and assign them to different devices

Training Dataset

 $w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{i=1}^{n} \nabla L_j(w_i)$

Transfer intermediate results between devices

How to parallelize DNN Training?

- Data parallelism
- Model parallelism
 - Tensor model parallelism
 - Pipeline model parallelism

Tensor Model Parallelism

Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output)

y = Wx

Data parallelism

Tensor	Model	Parallelism	(partition	output)
1011001	IVIOGCI	i didilololi	(partition)	output,

		Gradients Sync
$O(B * C_{in})$	$O(B * C_{in})$	0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)

$$y = y1 + y2$$

		Gradients Sync
$O(B * C_{out})$	$O(B * C_{out})$	0

Communication Cost of Tensor Model Parallelism

- Data parallelism: $O(C_{out} * C_{in})$
- Tensor model parallelism (partition output): $O(B * C_{in})$
- Tensor model parallelism (reduce output): $O(B * C_{out})$
- The best strategy depends on the model and underlying machine

Combine Data and Model Parallelism

Example: Convolutional Neural Networks

Classification

Segmentation

Retrieval

Self-Driving

Detection

Synthesis

Convolution

 Convolve the filter with the image: slide over the image spatially and compute dot products

CNNs

 A sequence of convolutional layers, interspersed by pooling, normalization, and activation functions

16

Parallelizing Convolutional Neural Networks

- Convolutional layers
 - 90-95% of the computation
 - 5% of the parameters
 - Very large intermediate activations
- Fully-connected layers
 - 5-10% of the computation
 - 95% of the parameters
 - Small intermediate activations

Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism

Parallelizing Convolutional Neural Networks

- Data parallelism for convolutional layers
- Tensor model parallelism for fully-connected layers

Example: Parallelizing Transformers

Transformer: attention mechanism for language understanding

Ashish Vaswani et. al. Attention is all you need.

Parallelizing Fully-Connected Layers in Transformers

Tensor model parallelism (partition output)

Tensor model parallelism (reduce output)

Parallelizing Transformers

Scale to 512 GPUs by combining data and model parallelism

How to parallelize DNN Training?

- Data parallelism
- Model parallelism
 - Tensor model parallelism
 - Pipeline model parallelism

An Issue with Model Parallelism

- Under-utilization of compute resources
- Low overall throughput due to resource utilization

Pipeline Model Parallelism

 Mini-batch: the number of samples processed in each iteration

- Divide a mini-batch into multiple micro-batches
- Pipeline the forward and backward computations across micro-batches

Pipeline Model Parallelism: Device Utilization

- m: micro-batches in a mini-batch
- p: number of pipeline stages
- All stages take $t_f/\ t_b$ to process a forward (backward) micro-batch

BubbleFraction =
$$\frac{(p-1)*(t_f+t_b)}{m*t_f+m*t_b} = \frac{p-1}{m}$$

Improving Pipeline Parallelism Efficiency

- m: number of micro-batches in a mini-batch
 - Increase mini-batch size or reduce micro-batch size
 - Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
- p: number of pipeline stages
 - Decrease pipeline depth
 - Caveat: increase stage size

Pipeline Model Parallelism: Memory Requirement

 An issue: we need to keep the intermediate activations of all microbatches before back propagation

Can we improve the pipeline schedule to reduce memory requirement?

Pipeline Parallelism with 1F1B Schedule

- One-Forward-One-Backward in the steady state
- Limit the number of in-flight micro-batches to the pipeline depth
- Reduce memory footprint of pipeline parallelism
- Doesn't reduce pipeline bubble

Can we reduce pipeline bubble?

Pipeline parallelism with 1F1B schedule

Pipeline Parallelism with Interleaved 1F1B Schedule

- Further divide each stage into v sub-stages
- The forward (backward) time of each sub-stage is $\frac{t_f}{v} (\frac{t_b}{v})$

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second chunk. $(t_c + t_s)$

$$BubbleFraction = \frac{(p-1)*\frac{(t_f+t_b)}{v}}{m*t_f + m*t_b} = \frac{1}{v}*\frac{p-1}{m}$$

Reduce bubble time at the cost increased communication

Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with 1F1B Schedule

$$BubbleFraction = \frac{p-1}{m}$$

Pipeline parallelism with interleaved 1F1B Schedule

$$BubbleFraction = \frac{1}{v} * \frac{p-1}{m}$$

Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism

	Data Parallelism	Tensor Model Parallelism	Pipeline Model Parallelism
Pros	✓ Massively parallelizable✓ Require no communication during forward/backward	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	✓ Support large-batch training✓ Efficient for deep models
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	Limited utilization: bubbles in forward/backward

Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism

	Data Parallelism	Model Parallelism	Pipeline Parallelism
Pros	✓ Massively parallelizable✓ Require no communication during forward/backward	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	✓ Support large-batch training✓ Efficient for deep models
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	Limited utilization: bubbles in forward/backward

Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

