15-442/15-642: Machine Learning Systems

Parallelization Part 2
(Model and Pipeline Parallelism)

Tiangi Chen
Carnegie Mellon University

Recap: Data Parallelism

T

ML Model

Training Dataset

Gradients

Aggregation

w; = w; —yVL(w;) = w; —

i . : : 3. Aggregate gradients
1. Partition training data into batches 2. Compute the gradients of
| each batch on a GPU across GPUs

Recap: An Issue with Data Parallelism

« Each GPU saves a replica of the
entire model

« Cannot train large models that
exceed GPU device memory

Gradients

Aggregation

Model Parallelism

« Split a model into multiple subgraphs and assign them to different devices

1
!

ML Model \VileYo I= | | Transfer
_ " Intermediate
Parallelism results
_I _ between
© devices

Training Dataset

How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism
 Pipeline model parallelism

¥
X

Tensor Model Parallelism

output input parameters

 Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output) Tensor Model Parallcilism z(reduce output) .
y=yl+y

Comparing Data and Tensor Model Parallelism

Cin

Forward Backward Gradients
Processing Propagation Sync

0 0 O0(Cout * Cin)

Communication Cost of Data Parallelism

Comparing Data and Tensor Model Parallelism

C
out
Cout

Cin
I,—l—, ——
B — B X Cin

————---J T S=Eeeee= Forward Backward Gradients
S eptio Processing Propagation Sync

i L O(B * Cin) O(B * Cin) 0

o I

o : Communication Cost of Tensor Model Parallelism
o I

L —

Tensor Model Parallelism (partition output) 10

Comparing Data and Tensor Model Parallelism

Forward Backward Gradients
Processing Propagation Sync
O(B * Cout) O(B * Coyt) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
y=yl+y2 11

Comparing Data and Tensor Model Parallelism

» Data parallelism: 0(Cyyt * Ci)
» Tensor model parallelism (partition output): O(B * C;;,)
« Tensor model parallelism (reduce output): O(B * C,;)

* The best strategy depends on the model and underlying machine

12

Combine Data and Model Parallelism

Model parallelism
A

Machine 2

Data parallelism

— Workload partitioning

\ Machine 3 |

Machine 4

13

Segmentation

onal N

S v oy
g ZJ"'n"‘J‘ . [PN
Ecl . 5
2 i 4 S ey
- Whan | Sace ¢ » ’ . 4
L % >
€ : 1 2)
o

Self-Driving

Synthesis

14

Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

/
—To| 4
So ’ 3 L~ 0
urce pixel o 1 3 2
1 LT 1
%ﬁf /1‘ A~ (-(1x3)+(0x0)+(1x1)+
—1 6 . ‘ 7 2 (2x2)+(0x6)+(2x2)+
el sl (1x2)+(0x4)+(1x1) =-3
AN P10 |0
2 1 = 3 < //
| =5 ..
3 }7 } 7 1 ////
— 1 6 |5 6 6 // =1
2 |~ 01— 31~ L] //
—1 6 }{ 6 //////
}{ 1 // =l //
2 // /// //
il Convolution filter e // B
(Sobel Gx) _—1 //
Destination pixel =7 == ==
= =1
=] // | —
L])
] i
//
e

CNNs

« A segquence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level | | Mid-level | | High-level | | separable }—
features features features .
classifier

[Zeiler and Fergus 2013] VGG-16 Conv1_1

Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

« Discussion: how to parallelize CNNs?

Tensor model parallelism

17

Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

» Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

>—<

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K

18

Example: Parallelizing Transformers

» Transformer: attention mechanism for language understanding

Output
Probabilities

Linear

-
Add & Norm

Feed

Forward

Add & Norm

EemEm)
[Add & Norm | -
ARl Bl Mult-Head
Feed Attention
B Forward T 7 Nx
—
-8 Nix Add & Norm
O Add & Norm Vasked
c Multi-Head Multi-Head
|_u Attention Attention
t _t
D— J L —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Ashish Vaswani et. al. Attention is all you need.

Decoder

am a student

s)
ENCODER > DECODER
\ &
4 2
e "
ENCODER DECODER
. J
))
s “
ENCODER DECODER
. >
& &
a N
ENCODER DECODER
. J
4 A
ENCODER DECODER
e J
4 A
{ N
ENCODER DECODER
& J
Q ¢

19

A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

T ——————
I |
| .
b o o o o o o 1

Input Embeddings (tokens,
positions, ...) & Dropout

20

Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(X x A)

7=D t(Y X B reduction layer
identity layer ropout()

'
| o [
I = | X =] XA4; 2|2 =¥ Y, B;
: c
| —
| Q| |
| = | X |2 X4; 2|2 =¥ Y>B;
: =
I S
|
\\\ A — _A17 A2]
Tensor model parallelism Tensor model parallelism

(partition output) (reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Parallelizing Transformers

m Model Parallel ®m Model + Data Parallel

100%

100%
l'éﬂ 20% 96%
= 82% 7% = s
T 60%
v
E 40%
= 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 29

How to parallelize DNN Training?

« Data parallelism

* Model parallelism
* Tensor model parallelism

30

An Issue with Model Parallelism

« Under-utilization of compute resources

« Low overall throughput due to resource utilization

Worker 1 [eJoks —>

-
ke ¢_.¢

Worker 4

mma OP4

/

loss

Worker 1
Worker 2
Worker 3

Worker 4

NI
N\

N

=V

N

=

-

o

&

DN

Forward
.

Time

Backward
Pass

NN

Idle

31

32

NN Idle

>

Time

7 .
. w AT .
\ mpm 40\.\\\\\\N“\\
7 gEes
27072 o=V
- ol
Vi | = SEIEY
\(w@@ g, S CIEIE
= I 1l 55e
M\\&Y\\\ . _H_ .m e
- =
- ¥ :
L O m.
l

N
AN

B Forward Pass [| Backward Pass

Worker 2
Worker 3
Worker 4
Worker 1
Worker 2
Worker 3
Worker 4

5
=
oL
@ =
© O &
— T O 7p) ©
) @) = 0
© fo) + O c
o E= Ec Sgy
— =i c © TE L
L g7 €8 858
g 29 S =£2%
O = O x O S ES
= =2 = .9 v 32
o & c 9
3 c o
D = ge)
) O c
- T o S S © VT
s h_um.m L o .MW%U
D cZE® O 5 X B
— — > O O =
Q. © O = 2 23 o
M = 0= al= oo c
[J Py °

Pipeline Model Parallelism: Device Utilization

e m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t¢/ t;, to process a forward (backward) micro-batch

mxte (p—1)x(tr+ty) mxty

Device 1 AR AL 112 |3 |4
Device 2 12345678 2 (3|45 9 10111213141516
p Device 3 12345678 314|516 910111213141516 E
Device 4 123456788 4 |5 |6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass |:] Backward Pass

(p—1) = (+ty) p-1
mxt; +mxt, m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

33

Improving Pipeline Parallelism Efficiency

 m : number of micro-batches in a mini-batch
* |ncrease mini-batch size or reduce micro-batch size

« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

* p: number of pipeline stages

« Decrease pipeline depth
« Caveat: increase stage size
mxty (p—1) = (r+ty) m=ty

l_‘_V_‘_\l | Pipeline flush

Device 1 ENAENCENVAE: 1123 |4 M 910111213141516
Device 2 12345678 2(3|4a]|s5 9 10111213141516
p Device 3 12345678 3|/4|51|6 910111213141516 E
Device 4 123456788 4 5|6 |7 910111213141516“@
Time —— Devices idle

- Forward Pass D Backward Pass
(p—1D=*(t+tp) p-—1

m x tf +m * tb m
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

BubbleFraction =

34

Pipeline Model Parallelism: Memory Requirement

« An issue: we need to keep the intermediate activations of all micro-
natches before back propagation

Pipeline flush
Device 1 REPAENNINAL:! 112|134 yA R 910111213141516
Device 2 12345678 2 (3|45 9 10111213141516
Device 3 12345678 3 /4|56 9 10111213141516 a
Device 4 12345678k 4|5 |6 |7 910111213141516“@
Time —— Devices idle

Forward Pass [] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

35

Pipeline Parallelism with 1F1B Schedule

Doesn’t reduce pipeline bubble

One-Forward-One-Backward in the steady state
Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Can we reduce pipeline bubble?

in-flight mciro-batches = 8 Pipelineflush

Device 1 [MEAENE M-V AK: 112 |3 |4|5|68 910111213141516

Device 2 12345678 1|12 (3|4 |5 |6 |78 910111213141516

Device 3 12345678 12 |3 |4|5|6]|7 910111213141516 E

Device 4 PR 1 | 2 |3 (4|5 |6 |7 |8 910111213141516“@
Time ——— Devices idle

I rorward Pass [| Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 1
Device 2
Device 3
Device 4

n 9 101112

9 101112

Pipeline parallelism with 1F1B schedule

36

Pipeline Parallelism with Interleaved 1F1B Schedule

 Further divide each stage into v sub-stages

* The forward (backward) time of each sub-stage is i (t—b)
v %

DR
Device 2 : 55=7=3=H 1 Hz 3 H p E

Device 3 H n

Device 4 Y75 16273 84 EEI0 1|12

Time ——
Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second

_ (p—1) 1L 1
BubbleFraction = = — %
m * tf + m x tb v

p—1
m

Reduce bubble time at the cost iIncreased communication

37

Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule

. p—1
BubbleFraction = ——
m

Pipeline parallelism with

Interleaved 1F1B Schedule

) 1 p-1
BubbleFraction = — *
v m

Device 1

Device 2

Device 3

Device 4

Time

Device 1

vevice2 (U8B LR A

Device 3

Device 4 3|34556|6

Time

Assign multiple stages

to each device

1234IH JSEGH?‘I&ZHSHil

Forward Pass Backward Pass

38

Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism

M) GPU 1 L 5 7 ; 77777] E: 7777 7777 ; 7777777777 1 — <8 Fao | Fa1 | Faz | Fas| Bas | Baz | Bsa | Bao Update
Ne” N) ML Model Model GPU 1 . Bes | Bux | Bor | B
ML Model 3 > éig g;; Parallelism) : 20 | Far | Faz | Fas 23 | Bez | Baa
_| - il:ll =|| 2 Fao | Fi1 | F1z | Fia s S | Bia | Biz | B Bia P
: _| GPU 2 A\ . — ‘ - o Bubble - he -
p . Training Dataset e il il i . ° ° ’ : -
.. c T .
i i i i J GPUN ;
— X)

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

v' Massively parallelizable v
Pros v Require no communication during v’
forward/backward
+ Do not work for models that cannot <«
fit on a GPU
Cons & Do not scale for models with large <

numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot <>
scale to large numbers of GPUs

Need to transfer intermediate

results in forward/backward

39

Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism

S | _ O lﬁ\ W" < AT
== Training large models requires combining data/model/pipeline . =
and other parallelization techniques

Data Parallelism Model Parallelism Pipeline Parallelism

v' Massively parallelizable v
Pros v Require no communication during v’
forward/backward
+ Do not work for models that cannot <
fit on a GPU
Cons

+ Do not scale for models with large X
numbers of parameters

Support training large models
Efficient for models with large
numbers of parameters

v' Support large-batch training
v’ Efficient for deep models

Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot <>
scale to large numbers of GPUs

Need to transfer intermediate

results in forward/backward

40

Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

[1 A%
- Data Parallel Rank O @
" Pipeline Stage 0 " Pipeline Stage 1 " Pipeline Stage 2 /" Pipeline Stage 3 Ko
| -
g — (I () : .
= g () o — —) : S
(7))
% N Network Layers 0-7 _ Network Layers 8-15 v L Network Layers 16-23 o \Network Layers 24-31 / 2
| -
— @)
@©)
| - - C
© (D)
o =
0] Data Parallel Rank 1
]
8 4 Pipeline Stage O N e Pipe“ne Stage 1 N ' P|pe||ne Stage 2 - Pipeline Stage 3 N Scaling to a Trillion Parameters
2 () z () H) _ 1200 10848
H -) :) ; -g 1000 866
z) : =¥ (= 5 800
z () z () z (—) z £ 600
8 400
__ Network Layers 0-7 _ Network Layers 8-15 _Network Layers 16-23 _ Network Layers 24-31) 200
- -/ 3
= 0

160 320 480 640 800
Number of GPUs

BN Parameters ==8==Throughput

https://lwww.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

40

30

20

10

Throughput (PFLOPS)

41

	Slide 1: 15-442/15-642: Machine Learning Systems Parallelization Part 2 (Model and Pipeline Parallelism)
	Slide 2: Recap: Data Parallelism
	Slide 3: Recap: An Issue with Data Parallelism
	Slide 4: Model Parallelism
	Slide 5: How to parallelize DNN Training?
	Slide 8: Tensor Model Parallelism
	Slide 9: Comparing Data and Tensor Model Parallelism
	Slide 10
	Slide 11
	Slide 12: Comparing Data and Tensor Model Parallelism
	Slide 13: Combine Data and Model Parallelism
	Slide 14: Example: Convolutional Neural Networks
	Slide 15: Convolution
	Slide 16: CNNs
	Slide 17: Parallelizing Convolutional Neural Networks
	Slide 18: Parallelizing Convolutional Neural Networks
	Slide 19: Example: Parallelizing Transformers
	Slide 20: A Single Transformer Layer
	Slide 21: Parallelizing Fully-Connected Layers in Transformers
	Slide 29: Parallelizing Transformers
	Slide 30: How to parallelize DNN Training?
	Slide 31: An Issue with Model Parallelism
	Slide 32: Pipeline Model Parallelism
	Slide 33: Pipeline Model Parallelism: Device Utilization
	Slide 34: Improving Pipeline Parallelism Efficiency
	Slide 35: Pipeline Model Parallelism: Memory Requirement
	Slide 36: Pipeline Parallelism with 1F1B Schedule
	Slide 37: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 38: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 39: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 40: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 41: Example: 3D parallelism in DeepSpeed

