15-442/15-642: Machine Learning Systems

Parallelization Part 2
(Model and Pipeline Parallelism)

Tianqi Chen and Zhihao Jia
Carnegie Mellon University



Recap: Data Parallelism

<D

ML Model
Gradients
j Aggregation
AN |

Training Dataset

w; = w; —YVL(w;) = w; —

" . : : 3. Aggregate gradients
1. Partition training data into batches 2. Compute the gradients of
J each batch on a GPU across GPUs



Recap: An Issue with Data Parallelism

« Each GPU saves a replica of the
entire model

« Cannot train large models that
exceed GPU device memory

Gradients

Aggregation




Model Parallelism

« Split a model into multiple subgraphs and assign them to different devices

Model
Parallelism

- Transfer

intermediate
results
between
devices



How to parallelize DNN Training?

» Data parallelism

* Model parallelism
* Tensor model parallelism
* Pipeline model parallelism



|
X

Tensor Model Parallelism

output input parameters

 Partition parameters/gradients within a layer

Tensor Model Parallelism (partition output) Tensor Model Parallili_ls_mz(reduce output) .
y=Yy y



Comparing Data and Tensor Model Parallelism

Cout

Forward Backward Gradients
Processing Propagation Sync

0 0 0 (Cout o Cin)

Communication Cost of Data Parallelism



Comparing Data and Tensor Model Parallelism

Cout

Forward Backward Gradients
Processing Propagation Sync

O(B * Cin) O(B * Cin) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (partition output)

10



Comparing Data and Tensor Model Parallelism

Cout

Forward Backward Gradients
Processing Propagation Sync

O(B * Coyt) O(B * Coyt) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
y=yl+y2 11



Comparing Data and Tensor Model Parallelism

« Data parallelism: 0(C,,; * Ci)
« Tensor model parallelism (partition output): O(B * C;;,)
« Tensor model parallelism (reduce output): O(B * Cyyt)

* The best strategy depends on the model and underlying machine

12



Combine Data and Model Parallelism

Model parallelism

A

Machine 2
Machine 1

s

— Workload partitioning

Machine 3 |

Data parallelism Machine 4

13



Example: Convolutional Neural Networks

beach wagon
fire engine | dead-man's-fingers

Classification

E

S0

Segmentation Self-Driving Synthesis
14



Convolution

« Convolve the filter with the image: slide over the image spatially and

compute dot products

N P T

VRN B

VR A

15

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter

(Sobel Gx)

Source pixel

on Ancna
At




CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,

and activation functions

[Zeiler and Fergus 2013]

@

VGG-16

Low-level
features

Mid-level
features

High-level
features

Linearly
separable
classifier

onv1_1

16



Parallelizing Convolutional Neural Networks

« Convolutional layers
* 90-95% of the computation
* 5% of the parameters
* Very large intermediate activations

 Fully-connected layers
* 5-10% of the computation
* 95% of the parameters
« Small intermediate activations

* Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism

17



Parallelizing Convolutional Neural Networks

« Data parallelism for convolutional layers

« Tensor model parallelism for fully-connected layers

Fully-connected

Convolutional

Model parallelism:

all workers train on same batch;
workers communicate as frequently as
netwo

[ ————— |

Worker 1

Data parallelism:

each worker trains the same
convolutional layers on a different
data batch.

Worker K

18



Example: Parallelizing Transformers

« Transformer: attention mechanism for language understanding

Output
Probabilities

(| Add & Norm

Feed
Forward

Add & Norm

( )
_ .
AddiciNotm: Multi-Head
Feed Attention
5 Forward 7 7 Nx
—
-8 N Add & Norm
O . Add & Norm ookod
cC Multi-Head Multi-Head
L Attention Attention
t 4 L
o J 0 — )
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Ashish Vaswani et. al. Attention is all you need.

Decoder

7 - N
ENCODER DECODER
\ \ J
) )
g '@ p
ENCODER DECODER
S \ J
4 4
e ¢ B
ENCODER DECODER
& . J
A 4
s 0 N
ENCODER DECODER
. L J
) )
r s p
ENCODER DECODER
\C ' v
4 2
~ s o)
ENCODER DECODER
. \ J
9 ®

19



A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

1
|
|
|
|
|
|
|
|
|
|
1

|
Self Attention &
Attention Dropout

,________
|

! I
e e

Input Embeddings (tokens,
positions, ...) & Dropout

20



Parallelizing Fully-Connected Layers in Transformers

Y = GeLU(XxA)

Z = Dropout(YXB) reduction layer
identity layer

/
| — |
l |
: oL
: = | X = XA4; = E = ':::;'::’ Y1B,
L
[
X = — i i
i o] m !
| =>| X |= - @‘,E@IFP Y2B,
| c B
i =
| s | I
\\ A — _Al, Az] y ‘\
\\ y - LUel s
Tensor model parallelism Tensor model parallelism
(partition output) (reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.



Parallelizing Transformers

m Model Parallel = Model + Data Parallel

100%
100%

téo 80% = 83%

— 82%

r— 77% 79%

v

X 40%

Q

< 20%

0%

1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

29



How to parallelize DNN Training?

» Data parallelism

* Model parallelism
» Tensor model parallelism
* Pipeline model parallelism

30



An Issue with Model Parallelism

» Under-utilization of compute resources
« Low overall throughput due to resource utilization

Worker 1 @—b Worker 1 IR § §§§ ﬁ%&& 111 §§
N \ NN
Worker 2 eJe; op2 Worker 2 . ‘& \ 1\ ! \
Worker 3 1 §\
Worker 3 BeJok! Worker 4 §§§k
Worker 4 eJoZ! op4 Time
] Forward Backward NN Idle

Pass Pass

loss



Pipeline Model Parallelism  Worker:

Worker 2

i

Worker 3

N
N

~

« Mini-batch: the number of
samples processed in each

iteration Time

Forward Backward ]
Pass I:I Pass m Idle

Worker 4

 Divide a mini-batch into
multiple micro-batches

. . Pipeline flush:
All inputs use weights from last flush P !
I I dd gradient
 Pipeline the forward and — add gradients
: . A nnnn
backward computations Worker 1 D NN [ 2 213 13 14
. b h Worker 2 : §\\§Q\\ ?‘\3:\*\ N 1(1]2]2]3]3]4]4 \\\
across micro-batches \ SRR = \
Worker 3 N\ NN 7 12]2]2]2 ] 4]« NN N
Ess “N“ N \{\‘R\X‘ \ \\:
N N NN N AT
Worker 4 N 1(2|2|3(3|4|4 §\\\:§~;\\\ IR \§§;¥
>
Time

I Forward Pass [ | Backward Pass Y Idle



Pipeline Model Parallelism: Device Utilization

* m . micro-batches in a mini-batch
* p: number of pipeline stages
* All stages take t;/ t; to process a forward (backward) micro-batch

mxte (p—1)*(tr+tp) mxt,

————

Device 1 BRNFAEN AW AL: 112 1|3 ]| 4
Device 2 12345678 23|45 9 10111213141516
P Device 3 12345678 3|4(|5]|6 9 10111213141516 E
Device 4 1234567 8M 4 | 5|6 |7 910111213141516“@
Time ——— Devices idle

B Forward Pass [ ] Backward Pass

P-1D*{+ty) p-—-1
mxt; +mxt, m

BubbleFraction =

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

33



Improving Pipeline Parallelism Efficiency

* m . number of micro-batches in a mini-batch
* Increase mini-batch size or reduce micro-batch size
« Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization
* p: number of pipeline stages
» Decrease pipeline depth
« Caveat: increase stage size
mxty (p—1)*(tr+tp) mxt,

Device 1 ERFAEN WAL 12|34
Device 2 12345678 23|45 9 10111213141516

p Device 3 12345678 3|4 |5]|6 9 10111213141516 E
Device 4 1234567 88 4 |5 |6 |7 910111213141516“@
Time — Devices idle

B Forward Pass [ | Backward Pass
P—1)*e+ty)) p-1

m x tf + m * tb m
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

BubbleFraction =




Pipeline Model Parallelism: Memory Requirement

* An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

Pipeline flush
N Rl 2345678 1123|4567 |38 ERNIEAEIEL
Device 2 | RIPENGIRA: 2(3|a|5|6|7]|8 9 10111213141516
Device 3 12345678 3(4|5|6|7 9 10111213141516 E
Device 4 12345678k 4|5 |6 |78 910111213141516"@
Time — Devices idle

B Forward Pass [ ] Backward Pass

Can we improve the pipeline schedule to reduce
memory requirement?

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism 35



Pipeline Parallelism with 1F1B Schedule

One-Forward-One-Backward in the steady state

Limit the number of in-flight micro-batches to the pipeline depth
Reduce memory footprint of pipeline parallelism

Doesn’t reduce pipeline bubble

Can we reduce pipeline bubble?

# in-flight mciro-batches = &

Device 1
Device 2
Device 3
Device 4

Pipeline flush

2

910111213141516

910111213141516

12345678 1
123456738 1] 2
123456738 112 (3

123456 7 8 iy

3
4
5

o |l o | »| w

® | N| o o

N|o | o s

Time —

B rForward Pass

]

9 10111213141516 E

9 10111213141516"@

Devices idle
Backward Pass

Pipeline parallelism with GPipe’s schedule

Device 2
Device 3
Device 4

Pipeline parallelism with 1F1B schedule

36



Pipeline Parallelism with Interleaved 1F1B Schedule

* Further divide each stage into v sub-stages

* The forward (backward) time of each sub-stage is J (v)

vevice 1 RN T AR
oovce2 WG LT RARM

Device 3 1234“ 4| 2 5=5n7 1 8253!4 7

Device 4 ‘51627384

Time ——
Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second

chunk. (t +tb)
, (p—1) -1 1
BubbleFraction = = — x
m x tf + m x* tb v

p—1
m

Reduce bubble time at the cost increased communication

37



Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with
1F1B Schedule

. p—1
BubbleFraction = ——
m

Pipeline parallelism with

interleaved 1F1B Schedule

) 1 p-1
BubbleFraction = — *
v m

Device 1
Device 2
Device 3
Device 4

Device 1 1234HHHH56
Device 2 1234“5!
Device 3 1234“
Device 4

H-E

‘556!71825354

Assign multiple stages
to each device

A B ¥ e R
518

‘51627384

Time ——

Forward Pass

111
gl - ¢ 7 - g 0 MBI E59

o111
111 o1
%012 m 2R

1 1
5 6

Backward Pass

38



Summary: Comparing Data/Tensor Model/Pipeline Model

Parallelism
—P %b | : 7 777777777777 ! E i =|| /‘.>. -
4:)@ ) GPU 1 \‘./ > ) — §::/' Fao | Fs1| Fsz | Fss| Bss | Baz | B: B Update
o ) ML Model Model ; GPU 1 !
ML Model - _» sE ; E: E Pal"al Iel ism Fzo | Fz1 | F2z | Fas Bza | Bz2 | B B. Update
:ll PU2 | : :ll . v ) Fio| Fir|Fio Fia| ¢ Subble S | Bia | B B Bio Upd
an Training Dataset N ./' ‘ Foo | Foa | Foz | Fo | ) B B Boa  Boo | Upd

GPU 2

(©)

Training Dataset |_> %

n
w; = w; —yVL(w;) = w; — Z VL;(w;) GPUN
=

n
)4
w; = w; —yVL(w;) = w; — ;Z VL;(w;)
=

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

v' Massively parallelizable v Support training large models v Support large-batch training
Pros v Require no communication during v Efficient for models with large v' Efficient for deep models
forward/backward numbers of parameters
s Do not work for models that cannot < Limited parallelizability; cannot +» Limited utilization: bubbles in
fit on a GPU scale to large numbers of GPUs forward/backward
Cons < Do not scale for models with large % Need to transfer intermediate
numbers of parameters results in forward/backward

39



Summary: Comparing
Parallelism

5ol

Se

ww Training large models requires combining data/model/pipeline

Data/Tensor Model/Pipeline Model

%

|Frm‘Fz1 | F:\9|F53| Baa ‘ Ba>» ‘ Ba1 | Ban ‘ Update

A\

and other parallelization techniques
Wi ::;:Tr:;j(z;tis:—AivLj(wi) *GW - w; = Wi_yVL(Wi):Wi_%janvLj(wi) : or .

Data Parallelism Model Parallelism Pipeline Parallelism

v' Massively parallelizable v
Pros v Require no communication during v
forward/backward
s Do not work for models that cannot <
fit on a GPU
Cons < Do not scale for models with large <

numbers of parameters

v Support large-batch training
v’ Efficient for deep models

Support training large models
Efficient for models with large
numbers of parameters

+ Limited utilization: bubbles in
forward/backward

Limited parallelizability; cannot
scale to large numbers of GPUs
Need to transfer intermediate
results in forward/backward

40



Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

| 1 Az
-~ B —
— Data Parallel Rank 0 D
" Pipeline Stage 0 " Pipeline Stage 1 | " Pipeline Stage 2 " Pipeline Stage 3 ©
£ = (—) () 1 CCL\'S
g — ) () 2 -
g () ——F () ¢ 9
% g {m— — —) : 3
WL _,_/
T) K Network Layers 0-7 \_ Network Layers 8-15 ) \_ Network Layers 16-23 \_Network Layers 24-31 E
| -
— o
© )
© "9 CICJ
o =
_'(E Data Parallel Rank 1
CDU (" Pipeline Stage 0 ) /" Pipeline Stage 1 (" Pipeline Stage 2 /" Pipeline Stage 3 | Scaling to a Trillion Parameters
2 — H — H —) : . 1200 10848
z @) L =) g 1000
? - = ) 2 g 800
Lottt S 400
_ \\ Network Layers 0-7 \_ Network Layers 8-15 ) \_ Network Layers 16-23 \_ Network Layers 24-31 // % 200
> 0

160 320 480 640 800
Number of GPUs

B Parameters — ==@==Throughput

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

Throughput (PFLOPS)



