15-442/15-642: Machine Learning Systems

Parallelization Part 1 (Data Parallelism and Zero Redundancy)

Tianqi Chen Carnegie Mellon University

2/19/2025

Recap: DNN Training Overview

Objective

Training

$$\begin{split} L(w) &= \sum_{i=1}^n l(y_i, \hat{y}_i) + \lambda \|w\|^2 \\ w \leftarrow w - \eta \nabla_w L(w) \end{split}$$

DNN Training Process

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce error for each trainable weight
- 3. Weight update: use the loss value to update model weights

DNN Training Process

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce a gradient for each trainable weight
- 3. Weight update: use the loss value to update model weights

DNN Training Process

Train ML models through many iterations of 3 stages

- 1. Forward propagation: apply model to a batch of input samples and run calculation through operators to produce a prediction
- 2. Backward propagation: run the model in reverse to produce a gradient for each trainable weight
- 3. Weight update: use the gradients to update model weights

$$w_i \coloneqq w_i - \gamma \frac{\partial L(w)}{\partial w_i} = w_i - \frac{\gamma}{n} \sum_{j=1}^n \frac{\partial l_i(w)}{\partial w_i} \text{ Given } in$$

Gradients of individual samples How can we parallelize DNN training?

$$w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

1. Partition training data into batches

2. Compute the gradients of each batch on a GPU

3. Aggregate gradients across GPUs

Data Parallelism: Parameter Server

Workers push gradients to parameter servers and pull updated parameters back

Inefficiency of Parameter Server

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?

Inefficiency of Parameter Server

- Centralized communication: all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?
- AllReduce: perform element-wise reduction across multiple devices

Different Ways to Perform AllReduce

- Naïve AllReduce
- Ring AllReduce
- Tree AllReduce
- Butterfly AllReduce

Naïve AllReduce

- Each worker can send its local gradients to all other workers
- If we have N workers and each worker contains M parameters
- Overall communication: N * (N-1) * M parameters
- Issue: each worker communicates with all other workers; same scalability issue as parameter server

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- After step 1, each worker has the aggregated version of M/N parameters

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times
- Overall communication: 2 * M * N parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Tree AllReduce

- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
 Worker 6

Tree AllReduce

- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat log(N) times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat log(N) times
- Overall communication: 2 * N * M parameters
 - Aggregation: M * N parameters
 - Broadcast: M * N parameters

Butterfly Network

Butterfly AllReduce

- Repeat log(N) times:
 - 1. Each worker sends M parameters to its target node in the butterfly network
 - 2. Each worker aggregates gradients locally
- Overall communication: N * M * log(N) parameters

Comparing different AllReduce Methods

	Parameter Server		Ring AllReduce	Tree AllReduce	Butterfly AllReduce
Overall communicatio n	$2 \times N \times M$	$N^2 \times M$	$2 \times N \times M$	$2 \times N \times M$	$N \times M$ $\times \log N$

Question: Ring AllReduce is more efficient and scalable then Tree AllReduce and Parameter Server, why?

Ring AllReduce v.s. Tree AllReduce v.s. Parameter Server

Ring AllReduce:

- Best latency
- Balanced workload across workers
- More scalable since each worker sends 2*M parameters (independent to the number of workers)

Worker A

Worker C

 r_0 r_1 r_2 r_3

Worker D

 $r_i = a_i + b_i + c_i + d_i$

 $r_1 r_2 r_3$

 r_1 r_2 r_3

Worker B

 r_1 r_2 r_3

Each worker sends M parameters per iteration; repeat for 2*log(N) iterations Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to parameter servers and receive M parameters from servers Latency: M * N / bandwidth

An Issue with Data Parallelism

- Each GPU saves a replica of the entire model
- Cannot train large models that exceed GPU device memory

Large Model Training Challenges

	Bert- Large	GPT-2	Turing 17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative				
Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

Large Model Training Challenges

	Bert- Large	GPT-2	Turing 17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative				
Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

NVIDIA V100 GPU memory capacity: 16G/32G NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

ZeRO: Zero Redundancy Optimizer

- Eliminating data redundancy in data parallel training
- A widely used technique for data parallel training of large models

Revisit: Stocastic Gradient Descent

For t = 1 to T

$$\Delta w = \eta \times \frac{1}{b} \sum_{i=1}^{b} \nabla \left(loss(f_w(x_i, y_i)) \right) // \text{ compute derivative and update}$$

$$w \to \Delta w // \text{ apply update}$$
End

Adaptive Learning Rates (Adam)

[1] Kingma and Ba, "Adam: A Method for Stochastic Optimization", 2014, https://arxiv.org/abs/1412.6980

Transformer for Language Models

Ashish Vaswani et. al. Attention is all you need.

A 16-layer transformer model = 1 layer

Each cell represents GPU memory used by its corresponding transformer layer

• FP16 parameter

- FP16 parameter
- FP16 Gradients

Understanding Memory Consumption

- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum, Parameters

Understanding Memory Consumption

- FP16 parameter : 2M bytes
- FP16 Gradients : 2M bytes
- FP32 Optimizer States : 16M bytes
 - Gradients, Variance, Momentum, Parameters Memory consumption doesn't include:

Input batch + activations

20GB/GPU

Example 1B parameter model ->

M = number of parameters in the model

ZeRO-DP: ZeRO powered Data Parallelism

- ZeRO removes the redundancy across data parallel process
- Stage 1: partitioning optimizer states
- Stage 2: partitioning gradients

ZeRO Stage 1

- ZeRO Stage 1
- Partitions optimizer states across GPUs

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and AllReduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

ZeRO: Zero Redundancy Optimizer

- Progressive memory savings and communication volume
- Turning NLR 17.2B is powered by Stage 1 and Megatron

- Partitioning gradients across GPUs
- The forward process remains the same as stage 1

- Partitioning gradients across GPUs
- Perform AllReduce right after back propagation of each layer

- Partitioning gradients across GPUs
- Only one GPU keeps the gradients after AllReduce

- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

ZeRO: Zero Redundancy Optimizer

- Progressive memory savings and communication volume
- Turning NLR 17.2B is powered by Stage 1 and Megatron

• In data parallel training, all GPUs keep <u>all</u> parameters during training

• In ZeRO, model parameters are partitioned across GPUs

- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters during forward

- In ZeRO, model parameters are partitioned across GPUs
- Parameters are discarded right after use

- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters again during backward

ZeRO: Zero Redundancy Optimizer

- ZeRO has three different stages
- Progressive memory savings and communication volume

Summary

- Data-parallel training
 - Parameter server
 - Ring AllReduce
 - Tree AllReduce
 - Butterfly AllReduce
- ZeRO: zero redundancy optimizer