
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Graph-Level Optimizations

Tianqi Chen

Carnegie Mellon University

1
2/17/2025



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: An Overview of Deep Learning Systems

2

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB

M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB

M

Automatic Differentiation 

Graph-Level Optimization

Parallelization / Distributed Training

Kernel Generation

Memory Optimization

Lecture 13

Lecture 11, 12

Lecture 10



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

3

A tensor algebra operator 

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph-Level Optimizations

4

conv3x3 conv1x1

Input

conv3x3

add

relu

…

Potential graph 

transformations

conv3x3 conv1x1

Input

conv3x3

add

relu

batchnorm batchnorm

Input Computation 

Graph

Optimized Computation 

Graph

Fuse conv + batchnorm

conv

batchnorm

conv



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Fusing Convolution and Batch Normalization

5

Conv2D

X W

BatchNorm

Y

Z

R P

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = 𝒀 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉, 𝒘)

B

W, B, R, P are constant pre-trained weights



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Conv and BatchNorm

6

Conv2D

X W

BatchNorm

Y

Z

R P

B

Conv2D

X W2

Z

B2

𝑾𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑾 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑩 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉, 𝒘)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Resnet Example

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

7

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅

𝑫

෍

𝒖=𝟏

𝟏

෍

𝒗=𝟏

𝟏

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗)

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅

𝑫

෍

𝒖=𝟏

𝟑

෍

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

8

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅

෍

𝒖=𝟏

𝟑

෍

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse

convs

9

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅

𝑫

෍

𝒖=𝟏

𝟑

෍

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾′(𝒄, 𝒅, 𝒖, 𝒗)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse

convs
Fuse

conv & add

The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.

Conv3x3

+ Relu

Input

Conv3x3

+ Relu

Fuse

conv & relu

Conv3x3

+ Relu

Input

Conv3x3

Relu

10



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Challenge of Graph Optimizations for ML

11

Graph Optimizations

ML 

Operators

Graph

Architectures

Hardware 

Backends

Infeasible to manually design graph optimizations 

for all cases 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

This Lecture

• TASO: Automatically Generate Graph Transformations

• PET: Discover Partially-Equivalent Graph Transformations

12



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TASO: Optimizing Deep Learning with
Automatic Generation of Graph Substitutions

13
TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x

• Stronger correctness: formally verify all generated substitutions

14TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution

15

Conv3x3

W1 W2 X

Conv3x3
Add

Conv3x3

W1 W2 X

Y Y

Add

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗)

֞ 𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟏 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TASO Workflow

16

Operator 

Specifications

Graph 

Subst. 

Generator

Graph 

Subst. 

Verifier

Candidate 

Substitutions
Verified 

Substitutions

Graph 

Optimizer
… …

Input 

Comp. Graph

Optimized

Comp. Graph



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Generator

Enumerate all possible graphs up to a 

fixed size using available operators

17

…

Operators supported by 

hardware backend

…

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Generator

18

66M graphs with up to 4 operators

…

Explicitly considering all pairs does not scale

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

A substitution = a pair of equivalent graphs



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Generator

I1

IK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

Compute output fingerprints 

with random input tensors

19

…

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Generator

I1

IK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

Pairs of graphs with identical 

fingerprint are candidate substitutions

20

…

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

TASO generates 28,744 substitutions by 

enumerating graphs with up to 4 operators 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pruning Redundant Substitutions

21

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

Input Tensor 

Renaming

28,744 substitutions

matmul

A B C

matmul

matmul

matmul

A B C

A x (B x C) (A x B) x C

X X

matmul

A B

matmul

matmul

matmul

A B

X X

A x (B x A) (A x B) x A

17,346 substitutions ⇋✘



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

⇋

⇋

Pruning Redundant Substitutions

22

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

Input Tensor 

Renaming

28,744 substitutions

17,346 substitutions

matmul

A B C

add

matmul

add

B C A

A + (B x C) (B x C) + A

X X

add

matmul

B A C

add

matmul

A B C

(A + B) x C (B + A) x C

X X

add

B A

add

A B

A + B B + A

X X

Common 

Subgraphs

743 substitutions



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Verifier

23

… Graph Subst. 

Verifier
…

Candidate 

Substitutions

Verified 

Substitutions
P1. conv is distributive 

over concatenation

P2. conv is bilinear

…
Pn. 

Operator 

Specifications

∀𝑥, 𝑤1, 𝑤2 .

𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤1, 𝑤2 =

𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤1), 𝐶𝑜𝑛𝑣 𝑥, 𝑤2

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verification Workflow

24

∀𝑥, 𝑤1, 𝑤2 .

𝐶𝑜𝑛𝑣 𝑥, 𝑤1), 𝐶𝑜𝑛𝑣(𝑥, 𝑤2

    = 𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤1, 𝑤2

Conv

W1 X W2

Conv

Concat

Conv

W1 W2 X

Y1 Y2 Split

Y1 Y2

(Conv(x,	w1),	Conv	(x,	w2)) Split(Conv(x,	Concat(w1,	w2)))

Automated

Theorem 

ProverP1. ∀𝑥, 𝑤1, 𝑤2 .

 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤1, 𝑤2 =

      𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤1), 𝐶𝑜𝑛𝑣 𝑥, 𝑤2

P2. …

Operator Specifications

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

25

TASO generates all 743 substitutions in 5 minutes, and 

verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 

effort to specify its properties

Operator specifications in TASO ≈ 1,400 LOC

Manual graph optimizations in TensorFlow ≈ 53,000 LOC  

Verification Effort



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Search-Based Graph Optimizer

26

Input 

Comp. Graph

Search-Based 

Graph Optimizer

…

Verified Substitutions

Optimized

Comp. Graph

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

Cost Model1

• Based on individual 

operators’ cost

• Measure the cost of each 

operator on hardware

• Cost-based backtracking 

search

• Optimizing an ML model 

takes less than 10 minutes

1. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

End-to-end Inference Performance (Nvidia V100 GPU)

0

3

6

9

12

15

ResNet-50 NasNet-A ResNeXt-50 NasRNN BERT-Large

R
u

n
ti

m
e
 (

m
s
)

TensorFlow TensorFlow XLA TensorRT TASO

1.3x

1.0x

3.1x 1.6x

1.5x

27

Competitive on 

standard models

Larger speedups on

emerging models



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

28

add

DWC
3x3

conv
1x1

conv
1x1

DWC
5x5

X2X1

W1

W3

W2

W4

conv
1x1

concat

DWC
5x5

concat

concat

X2X1

W3 W4

W2

DWC
3x3

DWC
5x5

X2X1

W1 W2

concat

W3 W4

concat

conv
1x1

DWC
5x5

DWC
5x5

X2

X1 W1

W2

concat

W3 W4

concat

conv
1x1

enlarge
5x5

W1

enlarge
5x5

Y Y Y Y

X

add

avg 
3x3

avg
3x3

DWC
3x3

Y Y

add

DWC 
3x3

DWC
3x3

Y

X

add

XCp(3x3) Cp(3x3)

DWC

3x3

Input1

Add

Conv

1x1

Conv

1x1

Add

Avg 

3x3

Avg

3x3

Avg

3x3

concat

Add Add Add

DWC

5x5

DWC

3x3

Conv

1x1

Conv

1x1

DWC

5x5
DWC

3x3

Conv

1x1

Input2

Case Study: NASNet

*DWC: depth-wise convolution



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Why TASO is a SuperOptimizer?

What is the difference between optimizer and super-optimizer?

29

Goal: gradually improve an 

input program by greedily 

applying optimizations

Goal: automatically find an 

optimal program for an input 

program



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET:
Optimizing Tensor Programs with Partially Equivalent 

Transformations and Automated Corrections

30PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivation: Fully v.s. Partially Equivalent Transformations

31

∀𝒑.  𝒀[𝒑] = 𝒁[𝒑]

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃𝒑.  𝒀[𝒑] ≠ 𝒁[𝒑]

X

Dilated 

Conv

Y

W X

Conv

Z

W

Conv

W1 W2 X

Conv
Add

Conv

W1 W2 X

Y Z

Add



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

32

∀𝒑.  𝒀[𝒑] = 𝒁[𝒑]

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃𝒑.  𝒀[𝒑] ≠ 𝒁[𝒑]

X

Dilated 

Conv

Y

W X

Conv

Z

W

Conv

W1 W2 X

Conv
Add

Conv

W1 W2 X

Y Z

AddIs it possible to exploit partially equivalent transformations to 

improve performance while preserving equivalence?

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Motivation: Fully v.s. Partially Equivalent Transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivating Example

33

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

Incorrect results



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivating Example

34

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

• Transformation and correction lead to 1.2x speedup for ResNet-18

• Correction preserves end-to-end equivalence



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET

• First tensor program optimizer with partially equivalent transformations

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x

• Correctness: automated corrections to preserve end-to-end equivalence

35PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET Overview

38

Optimized

Program

Mutant 

Generator

Mutant

Programs

Mutant 

Corrector

Corrected

Mutants

Program 

Optimizer

Input

Program

… …



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET vs TASO

39

Operator 

Specifications

Graph 

Subst. 

Generator

Graph 

Subst. 

Verifier

Candidate 

Substitutions
Verified 

Substitutions

Graph 

Optimizer
… …

Mutant 

Generator

Mutant

Programs

Mutant 

Corrector

Corrected

Mutants

Program 

Optimizer

Input

Program

… …



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

Superoptimization

Multi-linearity of DNN computations

40



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mutant Generator

Superoptimization adopted from TASO1

41

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer

Mutant 

Generator

Input 

(Sub)program

Operators supported by 

hardware backend

…

Enumerate all possible programs up to a 

fixed size using available operators

…

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mutant Generator

Superoptimization adopted from TASO1

42

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer

Mutant 

Generator

Input 

(Sub)program

Operators supported by 

hardware backend

…

Programs with the same input/output 

shapes are potential mutants

…

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Discover both fully and partially 

equivalent transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

43

Challenges: Examine Transformations

1. Which part of the computation is not equivalent?

2. How to correct the results?

Program f Program g

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Strawman Approach

• Step 1: Explicitly consider all 
output positions (m positions)

• Step 2: For each position p, 
examine all possible inputs 
(n inputs)

44

Program f Program g

p p

∀𝑰.  𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

Require O(m * n) examinations, but both m and n are too 

large to explicitly enumerate



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Linear Tensor Program (MLTP)

• A program 𝒇 is multi-linear if the output is linear to all inputs

• 𝒇 𝐼1, … , 𝑋, … , 𝐼𝑛 + 𝒇 𝐼1, … , 𝑌, … , 𝐼𝑛 = 𝒇 𝐼1, … , 𝑋 + 𝑌, … , 𝐼𝑛

• 𝛼 ∙ 𝒇 𝐼1, … , 𝑋, … , 𝐼𝑛 = 𝒇 𝐼1, … , 𝛼 ∙ 𝑋, … , 𝐼𝑛

• DNN computation = MLTP + non-linear activations

45

Majority of the computation

O(m * n) examinations 

in strawman approach

 

O(1) examinations in 

PET’s approach
MLTP



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Insight #1: No Need to Enumerate All Output Positions

Group all output positions with an identical 
summation interval into a region

*Theorem 1: For two MLTPs f and g,  if f=g 
for O(1) positions in a region, then f=g for 
all positions in the region

Only need to examine O(1) positions for    
each region.

Complexity: O(m * n) → O(n)

46

conv

𝑰𝟏 𝑰𝟐

𝒄𝒐𝒏𝒗 𝒄, 𝒉, 𝒘 = ෍

𝒅=𝟎

𝑫−𝟏

෍

𝒙=−𝟏

𝟏

෍

𝒚=−𝟏

𝟏
𝑰𝟏 𝒅, 𝒉 + 𝒙, 𝒘 + 𝒚

× 𝑰𝟐 (𝒅, 𝒄, 𝒙, 𝒚)

Summation interval
*Proof details available in the paper

region



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Insight #2: No Need to Consider All Possible Inputs

Examining equivalence for a single position 
is still challenging

*Theorem 2: If ∃𝐼.  𝑓 𝐼 𝑝 ≠ 𝑔 𝐼 𝑝 , then 
the probability that f and g give identical 

results on t random integer inputs is (
1

231)𝒕

Run t random tests for each position 𝒑 

Complexity: O(n) → O(t) = O(1)

47

Program f Program g

p p

∀𝑰.  𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

*Proof details available in the paper



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

48

conv

reshape & transpose

reshape & transpose

Mutant Program



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

49

conv

reshape & transpose

reshape & transpose

conv

Mutant Program

Correction Kernel 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

Step 2: opportunistically fuse correction 
kernels with other operators

50

conv

reshape & transpose

reshape & transpose

conv

Kernel Fusion

Correction introduces less than 

1% overhead



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Program Optimizer

51

Search-Based 

Program 

Optimizer

Input 

Program

Optimized

Program

Mutant 

Generator & 

Corrector

MLTP

…

Mutants w/ Corrections

• Beam search

• Optimizing a DNN architecture 

takes less than 30 minutes

Other optimizations:

• Operator fusion

• Constant folding

• Redundancy elimination

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

End-to-end Inference Performance (Nvidia V100 GPU)

0

3

6

9

12

15

ResNet-18 CSRNet

R
u

n
ti

m
e

 (
m

s
)

52

0

20

40

60

80

100

120

140

Inception-v3 BERT ResNet3D-18

TensorFlow TensorRT TASO PET

2.5x
1.2x

1.4x

1.2x

1.3x

PET outperforms existing optimizers by 1.2-2.5x 

by combining fully and partially equivalent transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: PET

• A tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x

• Correctness: automated corrections to preserve end-to-end equivalence

54



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

From Equivalent to Non-Equivalent Optimizations for ML

55

TASO

Equivalent optimizations

PET
Partially-equivalent 

optimizations w/ 

automated corrections

Non-equivalent 

optimizations w/ 

accuracy guarantees

Model Pruning, Quantization, 

Distillation, etc. 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Questions to Discuss

1. How does PET differ from TASO in generating graph transformations?

2. How does PET differ from TASO in verifying/correcting transformations?

3. How can we combine graph optimizations with kernel optimizations?

56


	Slide 1: 15-442/15-642: Machine Learning Systems  Graph-Level Optimizations
	Slide 2: Recap: An Overview of Deep Learning Systems
	Slide 3: Recap: Deep Neural Network
	Slide 4: Graph-Level Optimizations
	Slide 5: Example: Fusing Convolution and Batch Normalization
	Slide 6: Fusing Conv and BatchNorm
	Slide 7: Recap: Resnet Example
	Slide 8: Recap: Resnet Example
	Slide 9
	Slide 10: Recap: Resnet Example
	Slide 11: Challenge of Graph Optimizations for ML
	Slide 12: This Lecture
	Slide 13: TASO: Optimizing Deep Learning with Automatic Generation of Graph Substitutions
	Slide 14: TASO: Tensor Algebra SuperOptimizer
	Slide 15: Graph Substitution
	Slide 16: TASO Workflow
	Slide 17: Graph Substitution Generator
	Slide 18: Graph Substitution Generator
	Slide 19: Graph Substitution Generator
	Slide 20: Graph Substitution Generator
	Slide 21: Pruning Redundant Substitutions
	Slide 22: Pruning Redundant Substitutions
	Slide 23: Graph Substitution Verifier
	Slide 24: Verification Workflow
	Slide 25: Verification Effort
	Slide 26: Search-Based Graph Optimizer
	Slide 27: End-to-end Inference Performance (Nvidia V100 GPU)
	Slide 28: Case Study: NASNet
	Slide 29: Why TASO is a SuperOptimizer?
	Slide 30: PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
	Slide 31: Motivation: Fully v.s. Partially Equivalent Transformations
	Slide 32: Motivation: Fully v.s. Partially Equivalent Transformations
	Slide 33: Motivating Example
	Slide 34: Motivating Example
	Slide 35: PET
	Slide 38: PET Overview
	Slide 39: PET vs TASO
	Slide 40: Key Challenges
	Slide 41: Mutant Generator
	Slide 42: Mutant Generator
	Slide 43: Challenges: Examine Transformations
	Slide 44: A Strawman Approach
	Slide 45: Multi-Linear Tensor Program (MLTP)
	Slide 46: Insight #1: No Need to Enumerate All Output Positions
	Slide 47: Insight #2: No Need to Consider All Possible Inputs
	Slide 48: Mutant Corrector
	Slide 49: Mutant Corrector
	Slide 50: Mutant Corrector
	Slide 51: Program Optimizer
	Slide 52: End-to-end Inference Performance (Nvidia V100 GPU)
	Slide 54: Recap: PET
	Slide 55: From Equivalent to Non-Equivalent Optimizations for ML
	Slide 56: Questions to Discuss

