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Recap: An Overview of Deep Learning Systems
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Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

3

A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Convolution and Batch Normalization
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Conv2D

X W

BatchNorm

Y
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𝒁 𝒏, 𝒄, 𝒉,𝒘 = 𝒀 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉,𝒘)

B

W, B, R, P are constant pre-trained weights
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Fusing Conv and BatchNorm
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𝑾𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑾 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑩 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐	(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐	(𝒏, 𝒄, 𝒉,𝒘)
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Recap: Resnet Example

Conv3x3
+ Relu

Conv1x1
+ Relu

Input

Conv3x3

Add

Relu
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𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅	

𝑫

-
𝒖(𝟏

𝟏

-
𝒗(𝟏

𝟏

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅	

𝑫

-
𝒖(𝟏

𝟑

-
𝒗(𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example
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𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
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𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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𝒀 𝒏, 𝒄, 𝒉,𝒘 =-
𝒅	

𝑫

-
𝒖(𝟏

𝟑

-
𝒗(𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾′(𝒄, 𝒅, 𝒖, 𝒗)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example
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The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.
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Challenge of Graph Optimizations for ML

11

Graph Optimizations

ML 
Operators

Graph
Architectures

Hardware 
Backends

Infeasible to manually design graph optimizations 
for all cases 
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This Lecture

• TASO: Automatically Generate Graph Transformations
• PET: Discover Partially-Equivalent Graph Transformations

12
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TASO: Optimizing Deep Learning with
Automatic Generation of Graph Substitutions

13
TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x
• Stronger correctness: formally verify all generated substitutions

14TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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Graph Substitution
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Conv3x3

W1 W2 X

Conv3x3 Add

Conv3x3
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𝒀 𝒏, 𝒄, 𝒉, 𝒘 = (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟏(𝒄, 𝒅, 𝒖, 𝒗) + (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐(𝒄, 𝒅, 𝒖, 𝒗) 	

⇔𝒀 𝒏, 𝒄, 𝒉, 𝒘 = (
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗ 𝑾𝟏	(𝒄, 𝒅, 𝒖, 𝒗) +𝑾𝟐	(𝒄, 𝒅, 𝒖, 𝒗
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TASO Workflow
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Graph Substitution Generator

Enumerate all possible graphs up to a 
fixed size using available operators

17

Operators supported by 
hardware backend

…

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer
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Graph Substitution Generator
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66M graphs with up to 4 operators

Explicitly considering all pairs does not scale

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

A substitution = a pair of equivalent graphs
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Graph Substitution Generator
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Compute output fingerprints 
with random input tensors

19
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Graph Substitution Generator
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Pairs of graphs with identical 
fingerprint are candidate substitutions

20

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

TASO generates 28,744 substitutions by 
enumerating graphs with up to 4 operators 
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Pruning Redundant Substitutions

21

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

Input Tensor 
Renaming

28,744 substitutions

matmul

A B C

matmul

matmul

matmul

A B C

A x (B x C) (A x B) x C

X X

matmul

A B

matmul

matmul

matmul

A B

X X

A x (B x A) (A x B) x A

17,346 substitutions ⇋✘
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⇋✘

⇋✘

Pruning Redundant Substitutions
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Graph Substitution Verifier
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𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤!, 𝑤" =
𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤!), 𝐶𝑜𝑛𝑣 𝑥,𝑤"
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Verification Workflow

24

∀𝑥, 𝑤', 𝑤( .
𝐶𝑜𝑛𝑣 𝑥, 𝑤'), 𝐶𝑜𝑛𝑣(𝑥, 𝑤(

    = 𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤', 𝑤(
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Y1 Y2 Split

Y1 Y2

(Conv(x,	w1),	Conv	(x,	w2)) Split(Conv(x,	Concat(w1,	w2)))

Automated
Theorem 
ProverP1. ∀𝑥, 𝑤', 𝑤( .

	 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤', 𝑤( =
      𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤'), 𝐶𝑜𝑛𝑣 𝑥, 𝑤(
P2. …

Operator Specifications

Subst. 
Generator

Subst. 
Verifier

Graph 
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25

TASO generates all 743 substitutions in 5 minutes, and 
verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 
effort to specify its properties

Operator specifications in TASO ≈ 1,400 LOC
Manual graph optimizations in TensorFlow ≈ 53,000 LOC  

Verification Effort
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Search-Based Graph Optimizer

26

Input 
Comp. Graph

Search-Based 
Graph Optimizer

…
Verified Substitutions

Optimized
Comp. Graph

Subst. 
Generator

Subst. 
Verifier

Graph 
Optimizer

Cost Model1
• Based on individual 

operators’ cost
• Measure the cost of each 

operator on hardware

• Cost-based backtracking 
search

• Optimizing an ML model 
takes less than 10 minutes

1. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.
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End-to-end Inference Performance (Nvidia V100 GPU)
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27

Competitive on 
standard models

Larger speedups on
emerging models
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28
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Case Study: NASNet

*DWC: depth-wise convolution
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Why TASO is a SuperOptimizer?

What is the difference between optimizer and super-optimizer?

29

Goal: gradually improve an 
input program by greedily 
applying optimizations

Goal: automatically find an 
optimal program for an input 
program
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PET:
Optimizing Tensor Programs with Partially Equivalent 

Transformations and Automated Corrections

30PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21
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Motivation: Fully v.s. Partially Equivalent Transformations

31

∀𝒑. 	𝒀[𝒑] = 𝒁[𝒑]

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Partially Equivalent Transformations
Pro: better performance
• Faster ML operators
• More efficient tensor layouts
• Hardware-specific optimizations
Con: potential accuracy loss

∃𝒑. 	𝒀[𝒑] ≠ 𝒁[𝒑]
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32

∀𝒑. 	𝒀[𝒑] = 𝒁[𝒑]

Partially Equivalent Transformations
Pro: better performance
• Faster ML operators
• More efficient tensor layouts
• Hardware-specific optimizations
Con: potential accuracy loss

∃𝒑. 	𝒀[𝒑] ≠ 𝒁[𝒑]

X

Dilated 
Conv

Y

W X

Conv

Z

W

Conv

W1 W2 X

Conv Add

Conv

W1 W2 X

Y Z

AddIs it possible to exploit partially equivalent transformations to 
improve performance while preserving equivalence?

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Motivation: Fully v.s. Partially Equivalent Transformations
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Motivating Example

33
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T1

T2
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reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

Incorrect results
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Motivating Example

34

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

• Transformation and correction lead to 1.2x speedup for ResNet-18
• Correction preserves end-to-end equivalence
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PET

• First tensor program optimizer with partially equivalent transformations

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

35PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET Overview

38

Optimized
Program

Mutant 
Generator

Mutant
Programs

Mutant 
Corrector

Corrected
Mutants

Program 
Optimizer

Input
Program

… …



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

PET vs TASO

39

Operator 
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Graph 
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Verified 
Substitutions

Graph 
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Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

Superoptimization

Multi-linearity of DNN computations

40
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Mutant Generator

Superoptimization adopted from TASO1

41

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer

Mutant 
Generator

Input 
(Sub)program

Operators supported by 
hardware backend

…

Enumerate all possible programs up to a 
fixed size using available operators

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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Mutant Generator

Superoptimization adopted from TASO1

42

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer

Mutant 
Generator

Input 
(Sub)program

Operators supported by 
hardware backend

…

Programs with the same input/output 
shapes are potential mutants

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Discover both fully and partially 
equivalent transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

43

Challenges: Examine Transformations

1. Which part of the computation is not equivalent?
2. How to correct the results?

Program f Program g

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer
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A Strawman Approach

• Step 1: Explicitly consider all 
output positions (m positions)

• Step 2: For each position p, 
examine all possible inputs 
(n inputs)

44

Program f Program g

p p

∀𝑰. 	𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

Require O(m * n) examinations, but both m and n are too 
large to explicitly enumerate
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Multi-Linear Tensor Program (MLTP)

• A program 𝒇 is multi-linear if the output is linear to all inputs
• 𝒇 𝐼E, … , 𝑋,… , 𝐼F + 𝒇 𝐼E, … , 𝑌, … , 𝐼F = 𝒇 𝐼E, … , 𝑋 + 𝑌,… , 𝐼F
• 𝛼 7 𝒇 𝐼E, … , 𝑋,… , 𝐼F = 𝒇 𝐼E, … , 𝛼 7 𝑋,… , 𝐼F

• DNN computation = MLTP + non-linear activations

45

Majority of the computation

O(m * n) examinations 
in strawman approach
 

O(1) examinations in 
PET’s approachMLTP
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Insight #1: No Need to Enumerate All Output Positions

Group all output positions with an identical 
summation interval into a region

*Theorem 1: For two MLTPs f and g,  if f=g
for O(1) positions in a region, then f=g for 
all positions in the region

Only need to examine O(1) positions for    
each region.
Complexity: O(m * n) → O(n)

46

conv

𝑰𝟏 𝑰𝟐

𝒄𝒐𝒏𝒗 𝒄, 𝒉,𝒘 = -
𝒅(𝟎

𝑫,𝟏

-
𝒙(,𝟏

𝟏

-
𝒚(,𝟏

𝟏
	 𝑰𝟏 𝒅, 𝒉 + 𝒙,𝒘 + 𝒚
×	𝑰𝟐(𝒅, 𝒄, 𝒙, 𝒚)

Summation interval
*Proof details available in the paper

region
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Insight #2: No Need to Consider All Possible Inputs

Examining equivalence for a single position 
is still challenging

*Theorem 2: If ∃𝐼. 𝑓 𝐼 𝑝 ≠ 𝑔 𝐼 𝑝 , then
the probability that f and g give identical 
results on t random integer inputs is ( E

G!")
𝒕

Run t random tests for each position 𝒑
Complexity: O(n) → O(t) = O(1)
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Program f Program g

p p

∀𝑰. 	𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

*Proof details available in the paper
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

48
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reshape & transpose

reshape & transpose

Mutant Program
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

49

conv

reshape & transpose

reshape & transpose

conv

Mutant Program

Correction Kernel 
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

Step 2: opportunistically fuse correction 
kernels with other operators

50

conv

reshape & transpose

reshape & transpose

conv

Kernel Fusion

Correction introduces less than 
1% overhead
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Program Optimizer

51

Search-Based 
Program 
Optimizer

Input 
Program

Optimized
Program

Mutant 
Generator & 

Corrector

MLTP

…

Mutants w/ Corrections

• Beam search
• Optimizing a DNN architecture 

takes less than 30 minutes

Other optimizations:
• Operator fusion
• Constant folding
• Redundancy elimination

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer
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End-to-end Inference Performance (Nvidia V100 GPU)
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PET outperforms existing optimizers by 1.2-2.5x 
by combining fully and partially equivalent transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: PET

• A tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

54
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From Equivalent to Non-Equivalent Optimizations for ML

55

TASO
Equivalent optimizations

PET
Partially-equivalent 

optimizations w/ 
automated corrections

Non-equivalent 
optimizations w/ 

accuracy guarantees

Model Pruning, Quantization, 
Distillation, etc. 
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Questions to Discuss

1. How does PET differ from TASO in generating graph transformations?

2. How does PET differ from TASO in verifying/correcting transformations?

3. How can we combine graph optimizations with kernel optimizations?
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