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Recap: An Overview of Deep Learning Systems
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Recap: Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

3

A tensor algebra operator 

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Convolution and Batch Normalization
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𝒁 𝒏, 𝒄, 𝒉, 𝒘 = 𝒀 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉, 𝒘)

B

W, B, R, P are constant pre-trained weights
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Fusing Conv and BatchNorm
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𝑾𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑾 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉, 𝒘 = 𝑩 𝒏, 𝒄, 𝒉, 𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉, 𝒘)
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Recap: Resnet Example
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𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅
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෍
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example
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𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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𝒀 𝒏, 𝒄, 𝒉, 𝒘 = ෍

𝒅
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𝑿 𝒏, 𝒅, 𝒉 + 𝒖, 𝒘 + 𝒗 ∗ 𝑾′(𝒄, 𝒅, 𝒖, 𝒗)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Recap: Resnet Example
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The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.
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Challenge of Graph Optimizations for ML

11

Graph Optimizations

ML 

Operators

Graph

Architectures

Hardware 

Backends

Infeasible to manually design graph optimizations 

for all cases 
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This Lecture

• TASO: Automatically Generate Graph Transformations

• PET: Discover Partially-Equivalent Graph Transformations

12
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TASO: Optimizing Deep Learning with
Automatic Generation of Graph Substitutions

13
TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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TASO: Tensor Algebra SuperOptimizer

Key idea: replace manually-designed graph optimizations with automated 
generation and verification of graph substitutions for tensor algebra

• Less engineering effort: 53,000 LOC for manual graph optimizations in 
TensorFlow → 1,400 LOC in TASO

• Better performance: outperform existing optimizers by up to 3x

• Stronger correctness: formally verify all generated substitutions

14TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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Graph Substitution
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TASO Workflow
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Graph Substitution Generator

Enumerate all possible graphs up to a 

fixed size using available operators

17

…
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Graph Substitution Generator
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66M graphs with up to 4 operators

…

Explicitly considering all pairs does not scale

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

A substitution = a pair of equivalent graphs
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Graph Substitution Generator

I1

IK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

Compute output fingerprints 

with random input tensors

19

…

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Substitution Generator

I1

IK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

O1

OK

…

Pairs of graphs with identical 

fingerprint are candidate substitutions

20

…

Subst. 

Generator
Subst. 

Verifier

Graph 

Optimizer

TASO generates 28,744 substitutions by 

enumerating graphs with up to 4 operators 
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Pruning Redundant Substitutions
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⇋

⇋

Pruning Redundant Substitutions
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Graph Substitution Verifier
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Verification Workflow

24

∀𝑥, 𝑤1, 𝑤2 .

𝐶𝑜𝑛𝑣 𝑥, 𝑤1), 𝐶𝑜𝑛𝑣(𝑥, 𝑤2

    = 𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤1, 𝑤2
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 𝐶𝑜𝑛𝑣 𝑥, 𝐶𝑜𝑛𝑐𝑎𝑡 𝑤1, 𝑤2 =

      𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑣(𝑥, 𝑤1), 𝐶𝑜𝑛𝑣 𝑥, 𝑤2
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25

TASO generates all 743 substitutions in 5 minutes, and 

verifies them against 43 operator properties in 10 minutes

Supporting a new operator requires a few hours of human 

effort to specify its properties

Operator specifications in TASO ≈ 1,400 LOC

Manual graph optimizations in TensorFlow ≈ 53,000 LOC  

Verification Effort



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Search-Based Graph Optimizer

26
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Subst. 

Verifier
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Cost Model1

• Based on individual 

operators’ cost

• Measure the cost of each 

operator on hardware

• Cost-based backtracking 

search

• Optimizing an ML model 

takes less than 10 minutes

1. Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks. ICML’18.
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End-to-end Inference Performance (Nvidia V100 GPU)
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Competitive on 

standard models

Larger speedups on

emerging models
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28
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Case Study: NASNet

*DWC: depth-wise convolution
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Why TASO is a SuperOptimizer?

What is the difference between optimizer and super-optimizer?

29

Goal: gradually improve an 

input program by greedily 

applying optimizations

Goal: automatically find an 

optimal program for an input 

program
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PET:
Optimizing Tensor Programs with Partially Equivalent 

Transformations and Automated Corrections

30PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21
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Motivation: Fully v.s. Partially Equivalent Transformations

31

∀𝒑.  𝒀[𝒑] = 𝒁[𝒑]

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃𝒑.  𝒀[𝒑] ≠ 𝒁[𝒑]
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32

∀𝒑.  𝒀[𝒑] = 𝒁[𝒑]

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃𝒑.  𝒀[𝒑] ≠ 𝒁[𝒑]

X

Dilated 
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Y

W X

Conv

Z

W
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W1 W2 X

Conv
Add

Conv

W1 W2 X

Y Z

AddIs it possible to exploit partially equivalent transformations to 

improve performance while preserving equivalence?

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Motivation: Fully v.s. Partially Equivalent Transformations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivating Example

33
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Correcting Results

Incorrect results
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Motivating Example

34

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

• Transformation and correction lead to 1.2x speedup for ResNet-18

• Correction preserves end-to-end equivalence
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PET

• First tensor program optimizer with partially equivalent transformations

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x

• Correctness: automated corrections to preserve end-to-end equivalence

35PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI’21
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PET Overview

38
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PET vs TASO

39
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Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

Superoptimization

Multi-linearity of DNN computations

40
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Mutant Generator

Superoptimization adopted from TASO1

41

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer

Mutant 

Generator

Input 

(Sub)program

Operators supported by 

hardware backend

…

Enumerate all possible programs up to a 

fixed size using available operators

…

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.
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Mutant Generator

Superoptimization adopted from TASO1

42

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer

Mutant 

Generator

Input 

(Sub)program

Operators supported by 

hardware backend

…

Programs with the same input/output 

shapes are potential mutants

…

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Discover both fully and partially 

equivalent transformations
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43

Challenges: Examine Transformations

1. Which part of the computation is not equivalent?

2. How to correct the results?

Program f Program g

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer
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A Strawman Approach

• Step 1: Explicitly consider all 
output positions (m positions)

• Step 2: For each position p, 
examine all possible inputs 
(n inputs)

44

Program f Program g

p p

∀𝑰.  𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

Require O(m * n) examinations, but both m and n are too 

large to explicitly enumerate
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Multi-Linear Tensor Program (MLTP)

• A program 𝒇 is multi-linear if the output is linear to all inputs

• 𝒇 𝐼1, … , 𝑋, … , 𝐼𝑛 + 𝒇 𝐼1, … , 𝑌, … , 𝐼𝑛 = 𝒇 𝐼1, … , 𝑋 + 𝑌, … , 𝐼𝑛

• 𝛼 ∙ 𝒇 𝐼1, … , 𝑋, … , 𝐼𝑛 = 𝒇 𝐼1, … , 𝛼 ∙ 𝑋, … , 𝐼𝑛

• DNN computation = MLTP + non-linear activations

45

Majority of the computation

O(m * n) examinations 

in strawman approach

 

O(1) examinations in 

PET’s approach
MLTP
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Insight #1: No Need to Enumerate All Output Positions

Group all output positions with an identical 
summation interval into a region

*Theorem 1: For two MLTPs f and g,  if f=g 
for O(1) positions in a region, then f=g for 
all positions in the region

Only need to examine O(1) positions for    
each region.

Complexity: O(m * n) → O(n)
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conv

𝑰𝟏 𝑰𝟐

𝒄𝒐𝒏𝒗 𝒄, 𝒉, 𝒘 = ෍

𝒅=𝟎

𝑫−𝟏

෍

𝒙=−𝟏

𝟏

෍

𝒚=−𝟏

𝟏
𝑰𝟏 𝒅, 𝒉 + 𝒙, 𝒘 + 𝒚

× 𝑰𝟐 (𝒅, 𝒄, 𝒙, 𝒚)

Summation interval
*Proof details available in the paper

region
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Insight #2: No Need to Consider All Possible Inputs

Examining equivalence for a single position 
is still challenging

*Theorem 2: If ∃𝐼.  𝑓 𝐼 𝑝 ≠ 𝑔 𝐼 𝑝 , then 
the probability that f and g give identical 

results on t random integer inputs is (
1

231)𝒕

Run t random tests for each position 𝒑 

Complexity: O(n) → O(t) = O(1)
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Program f Program g

p p

∀𝑰.  𝒇 𝑰 𝒑 = 𝒈 𝑰 𝒑 ?

*Proof details available in the paper
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

48

conv

reshape & transpose

reshape & transpose

Mutant Program
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

49

conv

reshape & transpose

reshape & transpose

conv

Mutant Program

Correction Kernel 
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

Step 2: opportunistically fuse correction 
kernels with other operators

50

conv

reshape & transpose

reshape & transpose

conv

Kernel Fusion

Correction introduces less than 

1% overhead
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Program Optimizer

51

Search-Based 

Program 

Optimizer

Input 

Program

Optimized

Program

Mutant 

Generator & 

Corrector

MLTP

…

Mutants w/ Corrections

• Beam search

• Optimizing a DNN architecture 

takes less than 30 minutes

Other optimizations:

• Operator fusion

• Constant folding

• Redundancy elimination

Mutant 

Generator
Mutant 

Corrector

Program 

Optimizer
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End-to-end Inference Performance (Nvidia V100 GPU)
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PET outperforms existing optimizers by 1.2-2.5x 

by combining fully and partially equivalent transformations
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Recap: PET

• A tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x

• Correctness: automated corrections to preserve end-to-end equivalence

54
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From Equivalent to Non-Equivalent Optimizations for ML

55

TASO

Equivalent optimizations

PET
Partially-equivalent 

optimizations w/ 

automated corrections

Non-equivalent 

optimizations w/ 

accuracy guarantees

Model Pruning, Quantization, 

Distillation, etc. 
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Questions to Discuss

1. How does PET differ from TASO in generating graph transformations?

2. How does PET differ from TASO in verifying/correcting transformations?

3. How can we combine graph optimizations with kernel optimizations?
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