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ML System Optimization Problem

ML 

Models

cuDNNMKL-DNN ARM-Compute TPU Backends

• Specialized libraries for each backend (labor intensive)

• Non-automatic optimizations
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Machine Learning Compilation

ML 

Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation
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Machine Learning Compilation

Development Form Deployment Form

Transformer,

ResNet, LSTM
…

Description for execution engine 

weights 𝑤1 𝑤2

dnn-matmul softmaxliblibraries

API Interface

Android OpenCL Runtime

Machine learning compilation (MLC) is the 

process to transform and optimize machine 

learning execution from its development form 

to deployment form.

Android NN

relu

An example instance of deployment form

MLC Process
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Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the 
input, output and intermediate results of model 
executions.

Tensor Functions that encodes 
computations among the input/output. Note 
that a tensor function can contain multiple 
operations
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ML Compilation Goals

There are many equivalent ways to run the same model execution. The 
common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.
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Example Compilation Process 

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤2

𝑤1 linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

In this particular example, two tensor functions are folded into 

one (linear-relu). With a specialized implementation (in reality, 

they will be implemented using low-level primitives).
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Abstraction and Implementation

Abstraction refers to different ways to represent the same 
system interface (tensor function)

linear_relu

input: Tensor[(1, 3072)]

Tensor[(1, 200)]

Tensor[(1, 200)]

relu

linear

Three abstraction ways to represent the same tensor function (linear_relu), 

each providing a different level of details. In practice,  we usually say that the 

more specialized version is an implementation of higher-level abstraction.
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MLC as Tensor Function Transformation 
(with different abstractions)

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤2

𝑤1 linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Most MLC process can be viewed as transformation among tensor functions (that can 

be represented with different abstractions).
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Compiler Representation of a ML Model

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection if interdependent functions
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Example Compilation Flow: High-Level Transformations

Model
dot

add

x

w

b

softmax

@model(x, w, b)

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

import
High-level

transformations
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Example Compilation Flow: Lowering to Loop IR

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[j, x] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return z 
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Example Compilation Flow: Low Level Transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[k, j] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return Z 

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[k, j] 

return Y 

Low-level transformations
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Example Compilation Flow: CodeGen and Execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[k, j] 

return Y 

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation
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Discussion

• What are possible ways to represent a function in ML

• The possible set of optimizations we can perform in each type of 
representations.
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High-level IR and Optimizations

• Computation graph(or graph-like) representation

• Each node is a tensor operator(e.g. convolution)

• Can be transformed (e.g. fusion) and annotated (e.g. 
device placement)

• Most ML frameworks have this layer

dot

add

x

w

b

softmax

@model(x, w, b)
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Low-level Code Optimization

C = tvm.compute((m, n), 
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

f or  yo i n r ange( 128) :
  f or  xo i n r ange( 128) :
    C[ yo* 8: yo* 8+8] [ xo* 8: xo* 8+8]  = 0
    f or  ko i n r ange( 128) :
      f or  y i  i n r ange( 8) :
        f or  x i  i n r ange( 8) :
          f or  k i  i n r ange( 8) :
            C[ yo* 8+yi ] [ xo* 8+xi ]  += 
               A[ ko* 8+ki ] [ yo* 8+yi ]  *  B[ ko* 8+ki ] [ xo* 8+xi ]

Low-level Program Variants
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Elements of Low-level Loop Representation

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[k, j] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional 

buffer

Array 

computation

Loop nests
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Transforming Loops: Loop Splitting

for x in range(128):

  C[x] = A[x] + B[x] 

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation
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Transforming Loops: Loop Reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 
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Transforming Loops: Thread Binding

def gpu_kernel():

  C[threadId.x * 4 + blockIdx.x] = . . . 

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 
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Search via Learned Cost Model

One configuration instance in 

the search space

Search Space
Search 

Planner
Code Generator

Training data

ML Cost Model

learning
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