
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Machine Learning Compilation

Spring 2024

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

1
2/12/24

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML System Optimization Problem

ML
Models

cuDNNMKL-DNN ARM-Compute TPU Backends

• Specialized libraries for each backend (labor intensive)
• Non-automatic optimizations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Machine Learning Compilation

ML
Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Machine Learning Compilation

Development Form Deployment Form

Transformer,
ResNet, LSTM

…

Description for execution engine

weights 𝑤! 𝑤"

dnn-matmul softmaxliblibraries

API Interface

Android OpenCL Runtime

Machine learning compilation (MLC) is the
process to transform and optimize machine
learning execution from its development form
to deployment form.

Android NN

relu

An example instance of deployment form

MLC Process

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the
input, output and intermediate results of model
executions.

Tensor Functions that encodes computations
among the input/output. Note that a tensor
function can contain multiple operations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML Compilation Goals

There are many equivalent ways to run the same model execution. The
common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Process

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

In this particular example, two tensor functions are folded into
one (linear-relu). With a specialized implementation (in reality,
they will be implemented using low-level primitives).

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Abstraction and Implementation

Abstraction refers to different ways to represent the same system
interface (tensor function)

linear_relu

input: Tensor[(1, 3072)]

Tensor[(1, 200)]

Tensor[(1, 200)]

relu

linear

Three abstraction ways to represent the same tensor function (linear_relu),
each providing a different level of details. In practice, we usually say that the
more specialized version is an implementation of higher-level abstraction.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MLC as Tensor Function Transformation
(with different abstractions)

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Most MLC process can be viewed as transformation among tensor functions (that can
be represented with different abstractions).

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Compiler Representation of a ML Model

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection if interdependent functions

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: High-Level Transformations

Model
dot

add

x
w

b

softmax

@model(x, w, b)

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

import
High-level
transformations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: Lowering to Loop IR

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return z

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: Low Level Transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[k, j]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return Z

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[k, j]

return Y

Low-level transformations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: CodeGen and Execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[k, j]

return Y

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussion

• What are possible ways to represent a function in ML

• The possible set of optimizations we can perform in each type of
representations.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

High-level IR and Optimizations

• Computation graph(or graph-like) representation
• Each node is a tensor operator(e.g. convolution)
• Can be transformed (e.g. fusion) and annotated (e.g.

device placement)
• Most ML frameworks have this layer

dot

add

x
w

b

softmax

@model(x, w, b)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Low-level Code Optimization

C = tvm.compute((m, n),
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

for yo in range(128):
 for xo in range(128):
 C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
 for ko in range(128):
 for yi in range(8):
 for xi in range(8):
 for ki in range(8):
 C[yo*8+yi][xo*8+xi] +=
 A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

Low-level Program Variants

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Elements of Low-level Loop Representation

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[k, j]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional
buffer

Array
computation

Loop nests

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Loop Splitting

for x in range(128):

 C[x] = A[x] + B[x]

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Loop Reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Thread Binding

def gpu_kernel():

 C[threadId.x * 4 + blockIdx.x] = . . .

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Search via Learned Cost Model

One configuration instance in
the search space

Search Space Search
Planner

Code Generator

Training data
ML Cost Model

learning

