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ML System Optimization Problem

ML 
Models

cuDNNMKL-DNN ARM-Compute TPU Backends

• Specialized libraries for each backend (labor intensive)
• Non-automatic optimizations
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Machine Learning Compilation

ML 
Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation
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Machine Learning Compilation

Development Form Deployment Form

Transformer,
ResNet, LSTM

…

Description for execution engine 

weights 𝑤! 𝑤"

dnn-matmul softmaxliblibraries

API Interface

Android OpenCL Runtime

Machine learning compilation (MLC) is the 
process to transform and optimize machine 
learning execution from its development form 
to deployment form.

Android NN

relu

An example instance of deployment form

MLC Process
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Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the 
input, output and intermediate results of model 
executions.

Tensor Functions that encodes computations 
among the input/output. Note that a tensor 
function can contain multiple operations
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ML Compilation Goals

There are many equivalent ways to run the same model execution. The 
common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.
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Example Compilation Process 

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

In this particular example, two tensor functions are folded into 
one (linear-relu). With a specialized implementation (in reality, 
they will be implemented using low-level primitives).
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Abstraction and Implementation

Abstraction refers to different ways to represent the same system 
interface (tensor function)

linear_relu

input: Tensor[(1, 3072)]

Tensor[(1, 200)]

Tensor[(1, 200)]

relu

linear

Three abstraction ways to represent the same tensor function (linear_relu), 
each providing a different level of details. In practice,  we usually say that the 
more specialized version is an implementation of higher-level abstraction.
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MLC as Tensor Function Transformation 
(with different abstractions)

input: Tensor[(1, 3072)]

relu

𝑤"

𝑤! linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤"

𝑤! linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Most MLC process can be viewed as transformation among tensor functions (that can 
be represented with different abstractions).
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Compiler Representation of a ML Model

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection if interdependent functions
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Example Compilation Flow: High-Level Transformations

Model
dot

add

x
w

b

softmax

@model(x, w, b)

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

import
High-level
transformations
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Example Compilation Flow: Lowering to Loop IR

softmax

dot

add

x
w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[j, x] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return z 
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Example Compilation Flow: Low Level Transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[k, j] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

return Z 

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[k, j] 

return Y 

Low-level transformations
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Example Compilation Flow: CodeGen and Execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

  Y[i, j] = b[j]

  for k in range(16):

    Y[i, j] += x[i, k] * w[k, j] 

return Y 

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation
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Discussion

• What are possible ways to represent a function in ML

• The possible set of optimizations we can perform in each type of 
representations.
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High-level IR and Optimizations

• Computation graph(or graph-like) representation
• Each node is a tensor operator(e.g. convolution)
• Can be transformed (e.g. fusion) and annotated (e.g.

device placement)
• Most ML frameworks have this layer

dot

add

x
w

b

softmax

@model(x, w, b)
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Low-level Code Optimization

C = tvm.compute((m, n), 
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

for yo in range(128):
  for xo in range(128):
    C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
    for ko in range(128):
      for yi in range(8):
        for xi in range(8):
          for ki in range(8):
            C[yo*8+yi][xo*8+xi] += 
               A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

Low-level Program Variants
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Elements of Low-level Loop Representation

for i, j in grid(16, 16):

  Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

  Y[i, j] += x[i, k] * w[k, j] 

for i, j in grid(16, 16):

  Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional 
buffer

Array 
computation

Loop nests
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Transforming Loops: Loop Splitting

for x in range(128):

  C[x] = A[x] + B[x] 

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation
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Transforming Loops: Loop Reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

  for xi in range(4):

     C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 
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Transforming Loops: Thread Binding

def gpu_kernel():

  C[threadId.x * 4 + blockIdx.x] = . . . 

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

  for xo in range(32):

    C[xo * 4 + xi] 

      = A[xo * 4 + xi] + B[xo * 4 + xi] 
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Search via Learned Cost Model

One configuration instance in 
the search space

Search Space Search 
Planner

Code Generator

Training data
ML Cost Model

learning


