15-442/15-642: Machine Learning Systems Machine Learning Compilation

Spring 2024

Tianqi Chen and Zhihao Jia Carnegie Mellon University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

ML System Optimization Problem

- Specialized libraries for each backend (labor intensive)
- Non-automatic optimizations

MKL-DNN

cuDNN

ARM-Compute

TPU Backends

Machine Learning Compilation

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Machine Learning Compilation

Development Form

MLC Process

Machine learning compilation (MLC) is the process to transform and optimize machine learning execution from its development form to deployment form.

Deployment Form

An example instance of deployment form

Key Elements in Machine Learning Compilation

Tensor multi-dimensional array that stores the input, output and intermediate results of model executions.

Tensor Functions that encodes computations among the input/output. Note that a tensor function can contain multiple operations

ML Compilation Goals

There are many equivalent ways to run the same model execution. The common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.

Example Compilation Process

In this particular example, two tensor functions are folded into one (linear-relu). With a specialized implementation (in reality, they will be implemented using low-level primitives).

Abstraction and Implementation

Abstraction refers to different ways to represent the same system interface (tensor function)


```
def linear_relu(x, w, out):
    for i in range(1):
        for j in range(200):
            out[i, j] = 0
            for k in range(3072):
                out[i, j] += x[i, k] * w[j, k]
            out[i, j] = max(out[i, j], 0)
```

Three abstraction ways to represent the same tensor function (linear_relu), each providing a different level of details. In practice, we usually say that the more specialized version is an **implementation** of higher-level abstraction.

MLC as Tensor Function Transformation (with different abstractions)

Most MLC process can be viewed as transformation among tensor functions (that can be represented with different abstractions).

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

Compiler Representation of a ML Model

IRModule: a collection if interdependent functions

Example Compilation Flow: High-Level Transformations

Example Compilation Flow: Lowering to Loop IR

Example Compilation Flow: Low Level Transformations

Low-level transformations

Example Compilation Flow: CodeGen and Execution

Runtime Execution

Discussion

- What are possible ways to represent a function in ML
- The possible set of optimizations we can perform in each type of representations.

High-level IR and Optimizations

- Computation graph(or graph-like) representation
- Each node is a tensor operator(e.g. convolution)
- Can be transformed (e.g. fusion) and annotated (e.g. device placement)
- Most ML frameworks have this layer

Low-level Code Optimization

Elements of Low-level Loop Representation

Transforming Loops: Loop Splitting

Code for x in range(128): C[x] = A[x] + B[x]for xo in range(32): for xi in range(4): C[xo * 4 + xi]= A[xo * 4 + xi] + B[xo * 4 + xi]

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
```

Transforming Loops: Loop Reorder

```
Code
for xo in range(32):
  for xi in range(4):
     C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
for xi in range(4):
  for xo in range(32):
    C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
```

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
```

Transforming Loops: Thread Binding

```
Code
for xi in range(4):
  for xo in range(32):
    C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
def gpu_kernel():
  C[threadId.x * 4 + blockIdx.x] = . . .
```

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")
```

Search via Learned Cost Model

