
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Machine Learning Compilation

Spring 2025

Tianqi Chen

Carnegie Mellon University

1
2/10/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML System Optimization Problem

ML

Models

cuDNNMKL-DNN ARM-Compute TPU Backends

• Specialized libraries for each backend (labor intensive)

• Non-automatic optimizations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Machine Learning Compilation

ML

Models

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Machine Learning Compilation

Development Form Deployment Form

Transformer,

ResNet, LSTM
…

Description for execution engine

weights 𝑤1 𝑤2

dnn-matmul softmaxliblibraries

API Interface

Android OpenCL Runtime

Machine learning compilation (MLC) is the

process to transform and optimize machine

learning execution from its development form

to deployment form.

Android NN

relu

An example instance of deployment form

MLC Process

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Key Elements in Machine Learning Compilation

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)] Tensor multi-dimensional array that stores the
input, output and intermediate results of model
executions.

Tensor Functions that encodes
computations among the input/output. Note
that a tensor function can contain multiple
operations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

ML Compilation Goals

There are many equivalent ways to run the same model execution. The
common theme of MLC is optimization in different forms:

Minimize memory usage.

Improve execution efficiency.

Scaling to multiple heterogeneous nodes.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Process

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤2

𝑤1 linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

In this particular example, two tensor functions are folded into

one (linear-relu). With a specialized implementation (in reality,

they will be implemented using low-level primitives).

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Abstraction and Implementation

Abstraction refers to different ways to represent the same
system interface (tensor function)

linear_relu

input: Tensor[(1, 3072)]

Tensor[(1, 200)]

Tensor[(1, 200)]

relu

linear

Three abstraction ways to represent the same tensor function (linear_relu),

each providing a different level of details. In practice, we usually say that the

more specialized version is an implementation of higher-level abstraction.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

MLC as Tensor Function Transformation
(with different abstractions)

input: Tensor[(1, 3072)]

relu

𝑤2

𝑤1 linear

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Development Deployment

input: Tensor[(1, 3072)]

𝑤2

𝑤1 linear_relu

linear

softmax

Tensor[(1, 200)]

Tensor[(1, 10)]

Tensor[(1, 10)]

Most MLC process can be viewed as transformation among tensor functions (that can

be represented with different abstractions).

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of Machine Learning Compilation

Example ML Compilation Flow

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Compiler Representation of a ML Model

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

functions

call

IRModule: a collection if interdependent functions

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: High-Level Transformations

Model
dot

add

x

w

b

softmax

@model(x, w, b)

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

import
High-level

transformations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: Lowering to Loop IR

softmax

dot

add

x

w

b

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[j, x]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return z

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: Low Level Transformations

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[k, j]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

return Z

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[k, j]

return Y

Low-level transformations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Compilation Flow: CodeGen and Execution

softmax

x w

b@dot-add

@model(x, w, b) @dot-add(x, w, b)

for i, j in grid(16, 16):

 Y[i, j] = b[j]

 for k in range(16):

 Y[i, j] += x[i, k] * w[k, j]

return Y

@softmax

x w

b@dot-add

dot-add

softmax

Compiled Op Functions

….

Runtime Execution

Graph Interpretation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussion

• What are possible ways to represent a function in ML

• The possible set of optimizations we can perform in each type of
representations.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

High-level IR and Optimizations

• Computation graph(or graph-like) representation

• Each node is a tensor operator(e.g. convolution)

• Can be transformed (e.g. fusion) and annotated (e.g.
device placement)

• Most ML frameworks have this layer

dot

add

x

w

b

softmax

@model(x, w, b)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Low-level Code Optimization

C = tvm.compute((m, n),
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Specification

f or yo i n r ange(128) :
 f or xo i n r ange(128) :
 C[yo* 8: yo* 8+8] [xo* 8: xo* 8+8] = 0
 f or ko i n r ange(128) :
 f or y i i n r ange(8) :
 f or x i i n r ange(8) :
 f or k i i n r ange(8) :
 C[yo* 8+yi] [xo* 8+xi] +=
 A[ko* 8+ki] [yo* 8+yi] * B[ko* 8+ki] [xo* 8+xi]

Low-level Program Variants

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Elements of Low-level Loop Representation

for i, j in grid(16, 16):

 Y[i, j] = 0

for i, j, k in grid(16, 16, 16):

 Y[i, j] += x[i, k] * w[k, j]

for i, j in grid(16, 16):

 Z[i, j] = Y[i, j] + b[j]

@dot-add(x, w, b) Multi-dimensional

buffer

Array

computation

Loop nests

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Loop Splitting

for x in range(128):

 C[x] = A[x] + B[x]

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

x = get_loop("x")
xo, xi = split(x, 4)

Code Transformation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Loop Reorder

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)

Code Transformation

for xo in range(32):

 for xi in range(4):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transforming Loops: Thread Binding

def gpu_kernel():

 C[threadId.x * 4 + blockIdx.x] = . . .

x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")

Code Transformation

for xi in range(4):

 for xo in range(32):

 C[xo * 4 + xi]

 = A[xo * 4 + xi] + B[xo * 4 + xi]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Search via Learned Cost Model

One configuration instance in

the search space

Search Space
Search

Planner
Code Generator

Training data

ML Cost Model

learning

	Default Section
	Slide 1: 15-442/15-642: Machine Learning Systems Machine Learning Compilation
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: ML System Optimization Problem
	Slide 5: Machine Learning Compilation
	Slide 6: Machine Learning Compilation
	Slide 7: Key Elements in Machine Learning Compilation
	Slide 8: ML Compilation Goals
	Slide 9: Example Compilation Process
	Slide 10: Abstraction and Implementation
	Slide 11: MLC as Tensor Function Transformation (with different abstractions)
	Slide 12: Outline
	Slide 13: Compiler Representation of a ML Model
	Slide 14: Example Compilation Flow: High-Level Transformations
	Slide 15: Example Compilation Flow: Lowering to Loop IR
	Slide 16: Example Compilation Flow: Low Level Transformations
	Slide 17: Example Compilation Flow: CodeGen and Execution
	Slide 18: Discussion
	Slide 19: High-level IR and Optimizations
	Slide 20: Low-level Code Optimization
	Slide 21: Elements of Low-level Loop Representation
	Slide 22: Transforming Loops: Loop Splitting
	Slide 23: Transforming Loops: Loop Reorder
	Slide 24: Transforming Loops: Thread Binding
	Slide 25: Search via Learned Cost Model

