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Single Instruction, Multiple Data

2

Conventional single instruction, 

single data processor

Modern single instruction, 

multiple data processor
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Single Instruction, Multiple Data

• Same instruction broadcast and 
executed in parallel on all ALUs

• Add ALUs to increase compute 
capability

3
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Massive Parallel Computing Units
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Outline

• CUDA Programming Abstractions

• GPU Architectures

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

5
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CUDA Programming Language

• Introduced in 2007 with NVIDIA Tesla architecture

• ”C-like” languages for programming on GPUs

• CUDA’s abstractions closely match the capabilities/performance 
characteristics of modern GPUs 

• Design goal: maintain low abstraction distance

6
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CUDA Programs Consist of a Hierarchy of Threads

• Thread IDs are up to 3-dimensional (2D example below)

7

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on 

CPU
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CUDA Blocks Map to GPU Cores (Streaming Multiprocessors)

8

GPU
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Grid, Block, and Thread

• gridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

9

We always have:

gridIdx = (1, 1, 1)

threadDim = (1, 1, 1)
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Basic CUDA syntax

10

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Host

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;

   C[j][i] = A[j][i] + B[j][i];
}

Device

CUDA kernel: executed in parallel on multiple CUDA cores

Serial execution: running as part of normal C/C++ application on CPU

Bulk launch of many CUDA threads

“launch a grid of CUDA thread blocks”

Call returns when all threads have terminated

__global__ denotes a CUDA kernel function runs 

on GPU

Each thread computes its overall grid thread id 

from its position in its block (threadIdx) and its 

block’s position in the grid (blockIdx)
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Clear Separation of Host and Device Code

11

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{
   return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;

   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}

Separation of execution into host and device 

code is performed statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SIMD execution on GPU)
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Number of SIMD Threads is Explicit in Program

Number of kernel invocations is not determined by size of data collection
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const int Nx = 11; // not a multiple of threadsPerBlk.x
const int Ny = 5; // not a multiple of threadsPerBlk.y

dim3 threadsPerBlk(4, 3, 1);
dim3 numBlocks(3, 2, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 
matrixAdd<<<numBlocks, threadsPerBlk>>>(A, B, C);

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   // guard against out of bounds array access
   if (i < Nx && j < Ny)
      C[j][i] = A[j][i] + B[j][i];
}
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What about Conditional Execution? 

13

// kernel definition
__global__ void f(float A[N])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   float x = A[i];
   if (x > 0) {
      x = 2.0f * x;
   } else {
      x = exp(x, 5.0f);
   }
   A[i] = x;
}
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What about Conditional Execution? 
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// kernel definition
__global__ void f(float A[N])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   float x = A[i];
   if (x > 0) {
      x = 2.0f * x;
   } else {
      x = exp(x, 5.0f);
   }
   A[i] = x;
}
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Mask (discard) Output of ALU

15

// kernel definition
__global__ void f(float A[N])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   float x = A[i];
   if (x > 0) {

   } else {
  
    
   }
   A[i] = x;
}

x = 2.0f * x;

x = exp(x, 5.0f);
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After Branch: Continue at Full Performance

16

// kernel definition
__global__ void f(float A[N])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   float x = A[i];
   if (x > 0) {

   } else {
  
    
   }
   A[i] = x;
}

x = 2.0f * x;

x = exp(x, 5.0f);
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Terminology

Coherence execution

• Same instruction sequence applies to all elements

• Necessary for efficient use of GPUs

Divergent execution

• A lack of coherence execution

• Should be minimized in CUDA programs

17
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CUDA Memory Model

18

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)
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CUDA Memory Model

19

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)

Host memory address space

Device memory address space

Distinct host and device address spaces

• Cannot access host memory from device

• Cannot access device memory from host
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cudaMemcpy: Move Data Between Host and Device

20

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)

Host memory address space

Device memory address space

float* A = new float[N];       

// populate host address space pointer A
for (int i=0 i<N; i++)
   A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;                 // allocate buffer in 
cudaMalloc(&deviceA, bytes);    // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot 
// manipulate contents of deviceA directly from host.
// Only from device code.)
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CUDA Device Memory Model

• Three distinct types of memory available to kernels

21

Per-thread private memory 

(readable/writable by thread)

Per-block shared memory 

(readable/writable by all 

threads in a block)

Device global memory 

(readable/writable by all 

threads)

Why shared memory?

Enable cooperation across threads in a block
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CUDA Programming Example: 1D Convolution

22

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;
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1D Convolution (Version 1)

23

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) );  // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N);      // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

   int index = blockIdx.x * blockDim.x + threadIdx.x;  // thread local variable

   float result = 0.0f;  // thread-local variable
   for (int i=0; i<3; i++)   
     result += input[index + i];

   output[index] = result / 3.f;
}

each thread computes

result for one element
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1D Convolution (Reused Shared Memory)

24

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) );  // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N);      // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

   int index = blockIdx.x * blockDim.x + threadIdx.x;  // thread local variable

   __shared__ float support[THREADS_PER_BLK+2];        // per-block allocation
   support[threadIdx.x] = input[index];
   if (threadIdx.x < 2) {
      support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK]; 
   }

   __syncthreads();

   float result = 0.0f;  // thread-local variable
   for (int i=0; i<3; i++)   
     result += support[threadIdx.x + i];

   output[index] = result / 3.f;
}

All threads cooperatively load 

block’s support region from 

global into shared memory

(total of 130 loads instead of 3 * 

128 loads)

barrier (all threads in block)

each thread computes

result for one element
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CUDA Synchronization Primitives

• __syncthreads(): wait for all threads in a block to arrive at this point

• Atomic operations
• e.g.,  float atomicAdd(float* addr, float amount)

• Atomic operations on both global and shared memory

• Host/device synchronization
• Implicit barrier across all threads at return of kernel

25
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CUDA Compilation

• Goal: run a CUDA program on various GPUs 

26

High-end GPU (16 cores)

Mid-range GPU (6 cores)
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CUDA Compilation

27

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) ); 
cudaMalloc(&devOutput, sizeof(float) * N);

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

   int index = blockIdx.x * blockDim.x + threadIdx.x;  

   __shared__ float support[THREADS_PER_BLK+2];        
   support[threadIdx.x] = input[index];
   if (threadIdx.x < 2) {
      support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK]; 
   }

   __syncthreads();

   float result = 0.0f;  // thread-local variable
   for (int i=0; i<3; i++)   
     result += support[threadIdx.x + i];

   output[index] = result / 3.f;
}

A compiled CUDA device binary includes:

Program text (instructions)

Information about required resources:

• 128 threads per block
• 8 bytes of local data per thread

• 130 floats (520 bytes) of shared space 

per thread block

Launch 8K thread blocks
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CUDA Thread Block Scheduling

• Major CUDA assumption: threadblocks 
can be executed in any order (no 
dependencies between threadblocks)

• GPU maps threadblocks to cores using a 
dynamic scheduling policy that respects 
resource requirements

28

Grid of 8K convolve thread blocks 

(specified by kernel launch)

Block requirements:

• 128 threads

• 520 bytes of shared memory
• 1024 bytes of local memory
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A GPU Core: Streaming Multiprocessor

SMM resource limits:

• Max warp execution contexts: 64 (up to 64 * 32 = 2K total CUDA threads)

• 96 KB of shared memory

29

SIMD functional unit,

control shared across 32 units 

(1 MUL-ADD per clock)
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Running a Thread Block on an SMM

• Warp: A group of 32 CUDA threads shared an instruction stream.
• A convolve thread block is executed by 4 warps (4 warps x 32 threads / warp = 128 threads)

• SMM operation each clock:
• Select up to four runnable warps from 64 resident on an SMM (thread-level parallelism)

• Select up to two runnable instructions per warp (instruction-level parallelism)

30
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 520 bytes of shared memory

• Assume the host side launches 1000 thread blocks

• Run the program on a two-SMM GPU

31

#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 1: host sends CUDA kernel to device

32

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 
128 threads and 520 bytes of shared memory)

33

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 3: scheduler continues to map blocks to available execution contexts

34

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 3: scheduler continues to map blocks to available execution contexts

35

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• (third block won’t fit due to insufficient shared storage 3 x 520B > 1.5KB)

36

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 4: thread block 0 completes on core 0

37

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 5: thread block 4 is scheduled on core 0 (mapped to execution 
contexts 0-127)

38

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 6: thread block 2 completes on core 0

39

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 
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Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 7: thread block 5 is scheduled on core 0 (mapped to execution 
contexts 128-255)

40

GPU Work Scheduler

EXECUTE:    convolve
ARGS:       N, input_array, output_array
NUM_BLOCKS: 1000 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

What is a warp?

• A warp is a CUDA implementation 
detail on NVIDIA GPUs

• On modern NVIDIA GPUs, groups of 
32 CUDA threads in a thread block 
are executed simultaneously using 
32-wide SIMD execution

41
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Recall: An SMM on a NVIDIA GTX 980 (2014)

• SMM resource:
• Map warp execution contexts: 64 (64 * 32 = 2048 total CUDA threads)

• 96 KB of shared memory

42
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NVIDIA GTX 980 Contains 16 SMMs

43

1.1 GHz clock

16 SMM cores per chip

16 x 4 warps x 32 threads / warp
= 2048 SIMD mul-add ALUs

= 4.6 TFLOPs

Up to 16 x 64 = 1024 interleaved 

warps per chip
(32,768 CUDA threads / chip)
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GTX 980 (2014) -> H100 (2022)

• SMMs remain the same
• Clock speed: 1064 MHz -> 1110 MHz

• Map warps per SMM: 64 -> 64

• Threads per warp: 32 -> 32

• Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB (H100)

• Streaming multiprocessors: 16 SMMs -> 132 SMMs

• Peak performance 4.6 TFLOPs -> 1000 TFLOPs (mainly because of 
tensor cores)

44
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H100 Architecture 
with Tensor Cores

45
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Tensor Cores

• Matrix multiplication unit in SMM

46
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Tensor Cores

47
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Outline

• CUDA Programming Abstractions

• CUDA Implementation on Modern GPUs

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

48
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Strawman Implementation of Matmul

• Compute 𝐶 = 𝐴 × 𝐵

• Each thread computes one element

49

A

B

C

N

N

N

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  int x = blockIdx.x * blockDim.x + threadIdx.x;
  int y = blockIdx.y * blockDim.y + threadIdx.y;

  result = 0; 
  for (int k = 0; k < N; ++k) {
    result += A[x][k] * B[k][y];
  }
  C[x][y] = result;
}

Global memory access per thread: 2*N

Number of threads: 𝑁2

Total global memory access: 𝟐𝑵𝟑

int N = 1024;
dim3 threadsPerBlock(32, 32, 1);
dim3 numBlocks(N/32, N/32, 1);

matmul<<<numBlocks, threadsPerBlock>>>(A, B, C);
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Optimization 1: Thread-Level Register Tiling

• Compute 𝐶 = 𝐴 × 𝐵

• Each thread computes a V x V submatrix

50

A

B

C

V

V

V

N

N

N

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  int ybase = blockIdx.y * blockDim.y + threadIdx.y;
  int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 
  float c[V][V] = {0};
  float a[V], b[V];
  for (int k = 0; k < N; ++k) {
    a[:] = A[xbase*V : xbase*V + V, k]; 
    b[:] = B[k, ybase*V : ybase*V + V];  
    for (int y = 0; y < V; ++y) {
      for (int x = 0; x < V; ++x) {
        c[x][y] += a[x] * b[y];
      }
    }
  }
  C[xbase * V : xbase*V + V, ybase*V : ybase*V + V] = c[:];
}

Global memory access per thread: 2𝑁𝑉
Number of threads: 𝑁2/𝑉2

Total global memory access: 𝟐𝑵𝟑/𝑽
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__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) { 
  __shared__ float sA[S][L], sB[S][L]; 
  float c[V][V] = {0};
  float a[V], b[V];
  int yblock = blockIdx.y;
  int xblock = blockIdx.x;
 
  for (int ko = 0; ko < N; ko += S) {
    __syncthreads(); 
    // needs to be implemented by thread cooperative fetching
    sA[:, :] = A[k : k + S, yblock * L : yblock * L + L]; 
    sB[:, :] = B[k : k + S, xblock * L : xblock * L + L]; 
  __syncthreads();
    for (int ki = 0; ki < S; ++ ki) {
      a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
      b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
      for (int y = 0; y < V; ++y) {
        for (int x = 0; x < V; ++x) {
          c[y][x] += a[y] * b[x];
        }
      }
    } 
  }
  int ybase = blockIdx.y * blockDim.y + threadIdx.y;
  int xbase = blockIdx.x * blockDim.x + threadIdx.x;
  C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
}

Optimization 2: Block-Level Shared Memory Tiling

• A block computes a L x L submatrix

• A thread computes a V x V submatrix 
and reuses the matrices in shared 
mem

51

A

B

C

L

L

L

L

N

N

S

S

Each thread 

compute VxV
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__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) { 
  __shared__ float sA[S][L], sB[S][L]; 
  float c[V][V] = {0};
  float a[V], b[V];
  int yblock = blockIdx.y;
  int xblock = blockIdx.x;
 
  for (int ko = 0; ko < N; ko += S) {
    __syncthreads(); 
    // needs to be implemented by thread cooperative fetching
    sA[:, :] = A[k : k + S, yblock * L : yblock * L + L]; 
    sB[:, :] = B[k : k + S, xblock * L : xblock * L + L]; 
  __syncthreads();
    for (int ki = 0; ki < S; ++ ki) {
      a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
      b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
      for (int y = 0; y < V; ++y) {
        for (int x = 0; x < V; ++x) {
          c[y][x] += a[y] * b[x];
        }
      }
    } 
  }
  int ybase = blockIdx.y * blockDim.y + threadIdx.y;
  int xbase = blockIdx.x * blockDim.x + threadIdx.x;
  C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
}

Analysis of Memory Reuse

52

Global memory access per thread block: 2𝐿𝑁
Number of thread blocks: 𝑁2/𝐿2

Total global memory access: 𝟐𝑵𝟑/𝑳

Shared memory access per thread: 2𝑉𝑁
Number of threads: 𝑁2/𝑉2

Total shared memory access: 𝟐𝑵𝟑/𝑽

A

B

C

L

L

L

L

N

N

S

S

Each thread

compute VxV
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Coorperative Fetching

53

sA[:, :] = A[k : k + S, yblock * L : yblock * L + L]; 

int nthreads = blockDim.y * blockDim.x;
int tid = threadIdx.y * blockDim.x + threadIdx.x;

for(int j = 0; j < L * S / nthreads; ++j) {
  int y = (j * nthreads + tid) / L;
  int x = (j * nthreads + tid) % L;
  s[y, x] = A[k + y, yblock * L + x]; 
}
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Outline

• CUDA Programming Abstractions

• CUDA Implementation on Modern GPUs

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

54
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Parallel Reduction

• Common and important primitive used by many MLSys operators: 
normalization, softmax, etc

• Tree-based approach to reduce elements within each thread block

55
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Challenges of Parallel Reduction in CUDA

• Task: for a large array of n elements, compute σ𝑖=1
𝑛 𝐴[𝑖]

• To achieve high GPU utilization
• Need to use multiple thread blocks (since a block is assigned to one SMM)

• Each thread block reduces a portion of the array

• How to communicate partial results between thread blocks?

56
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Problem: CUDA has no Global Synchronization

Recall CUDA assumption: thread blocks can be executed in any order, 
cannot sync between them

Why?

• Expensive to build hardware for GPUs with high processor count

• Potential deadlock when # blocks > # multiprocessors * # resident blocks

Solution: decompose into multiple kernels

• Kernel launch serves a global synchronization

• Kernel launch has very low hardware/software overhead

57
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Solution: Kernel Decomposition

• Avoid global synchronization by decompose computation into multiple 
kernel invocations

• Code for all levels is the same

58
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Version 1: Interleaved Addressing

59
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Version 1: Interleaved Addressing

60

__global__ void reduce0(int *g_idata, int *g_odata) {
  extern __shared__ int sdata[];

  // each thread loads one element from global to shared mem
  unsigned int tid = threadIdx.x;
  unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
  sdata[tid] = g_idata[i];
  __syncthreads();

  // do reduction in shared mem
  for(unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
      sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
  }
  
  // write result for this block to global mem 
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Why we need the two 

__syncthreads?
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Version 1: Interleaved Addressing

61

__global__ void reduce0(int *g_idata, int *g_odata) {
  extern __shared__ int sdata[];

  // each thread loads one element from global to shared mem
  unsigned int tid = threadIdx.x;
  unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
  sdata[tid] = g_idata[i];
  __syncthreads();

  // do reduction in shared mem
  for(unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
      sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
  }
  
  // write result for this block to global mem 
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Problem: highly 

divergent warps
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Version 1: Divergent Warps

62

for(unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0)
    sdata[tid] += sdata[tid + s];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T F T F T F T F T F T F T F T Fs=1

T F F F T F F F T F F F T F F Fs=2

T F F F F F F F T F F F F F F Fs=4
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Version 2: Strided Index and Non-divergent warp

63

for(unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
      sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
  }

for(unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 *s * threadIdx.x;
    if (index < blockDim.x) {
      sdata[index] += sdata[index + s];
    }
    __syncthreads();
  }

Replace divergent branch with strided 

index and non-divergent branch

Original 

Version

Optimized 

Version
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Version 2: Strided Index and Non-divergent warp
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for(unsigned int s=1; s < blockDim.x; s *= 2) {
  int index = 2 *s * threadIdx.x;
  if (index < blockDim.x)
    sdata[index] += sdata[index + s];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T F F F F F F F Fs=1

T T T T F F F F F F F F F F F Fs=2

T T F F F F F F F F F F F F F Fs=4



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Coalesced Memory Access

• Multiple GPU threads access consecutive memory addresses

• Maximize GPU memory usage

65

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4
first load

second load
third load

coalesced access (optimal usage)

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4
first load

second load
third load

Non-coalesced access (suboptimal usage)
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Version 1: Interleaved Addressing

66

Suboptimal memory accesses
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Version 2: Sequential Addressing

67

Fully coalesced memory access
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Version 2: Sequential Addressing

68

for(unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 *s * threadIdx.x;
    if (index < blockDim.x) {
      sdata[index] += sdata[index + s];
    }
    __syncthreads();
  }

Original 

Version

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
    if (threadIdx.x < s) {
      sdata[threadIdx.x] += sdata[threadIdx.x + s];
    }
    __syncthreads();
  }

Original 

Version

Replace strided index with reversed 

loop and threadId-based index
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Recap

• CUDA programming and GPU architecture

• GPU optimization techniques:
• Coherence warps

• Coalesced memory access

• Shared memory bank conflict

• Warp level optimizations

• Tensor core

69
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