
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

GPU Architecture & CUDA Programming

Tianqi Chen

Carnegie Mellon University

1
2/3/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Single Instruction, Multiple Data

2

Conventional single instruction,

single data processor

Modern single instruction,

multiple data processor

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Single Instruction, Multiple Data

• Same instruction broadcast and
executed in parallel on all ALUs

• Add ALUs to increase compute
capability

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Massive Parallel Computing Units

4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

• CUDA Programming Abstractions

• GPU Architectures

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

5

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Programming Language

• Introduced in 2007 with NVIDIA Tesla architecture

• ”C-like” languages for programming on GPUs

• CUDA’s abstractions closely match the capabilities/performance
characteristics of modern GPUs

• Design goal: maintain low abstraction distance

6

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Programs Consist of a Hierarchy of Threads

• Thread IDs are up to 3-dimensional (2D example below)

7

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on

CPU

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Blocks Map to GPU Cores (Streaming Multiprocessors)

8

GPU

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Grid, Block, and Thread

• gridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

9

We always have:

gridIdx = (1, 1, 1)

threadDim = (1, 1, 1)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Basic CUDA syntax

10

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Host

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + B[j][i];
}

Device

CUDA kernel: executed in parallel on multiple CUDA cores

Serial execution: running as part of normal C/C++ application on CPU

Bulk launch of many CUDA threads

“launch a grid of CUDA thread blocks”

Call returns when all threads have terminated

__global__ denotes a CUDA kernel function runs

on GPU

Each thread computes its overall grid thread id

from its position in its block (threadIdx) and its

block’s position in the grid (blockIdx)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Clear Separation of Host and Device Code

11

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{
 return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + doubleValue(B[j][i]);
}

Separation of execution into host and device

code is performed statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SIMD execution on GPU)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Number of SIMD Threads is Explicit in Program

Number of kernel invocations is not determined by size of data collection

12

const int Nx = 11; // not a multiple of threadsPerBlk.x
const int Ny = 5; // not a multiple of threadsPerBlk.y

dim3 threadsPerBlk(4, 3, 1);
dim3 numBlocks(3, 2, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlk>>>(A, B, C);

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 // guard against out of bounds array access
 if (i < Nx && j < Ny)
 C[j][i] = A[j][i] + B[j][i];
}

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

What about Conditional Execution?

13

// kernel definition
__global__ void f(float A[N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float x = A[i];
 if (x > 0) {
 x = 2.0f * x;
 } else {
 x = exp(x, 5.0f);
 }
 A[i] = x;
}

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

What about Conditional Execution?

14

// kernel definition
__global__ void f(float A[N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float x = A[i];
 if (x > 0) {
 x = 2.0f * x;
 } else {
 x = exp(x, 5.0f);
 }
 A[i] = x;
}

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mask (discard) Output of ALU

15

// kernel definition
__global__ void f(float A[N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float x = A[i];
 if (x > 0) {

 } else {

 }
 A[i] = x;
}

x = 2.0f * x;

x = exp(x, 5.0f);

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

After Branch: Continue at Full Performance

16

// kernel definition
__global__ void f(float A[N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float x = A[i];
 if (x > 0) {

 } else {

 }
 A[i] = x;
}

x = 2.0f * x;

x = exp(x, 5.0f);

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Terminology

Coherence execution

• Same instruction sequence applies to all elements

• Necessary for efficient use of GPUs

Divergent execution

• A lack of coherence execution

• Should be minimized in CUDA programs

17

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Memory Model

18

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Memory Model

19

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)

Host memory address space

Device memory address space

Distinct host and device address spaces

• Cannot access host memory from device

• Cannot access device memory from host

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

cudaMemcpy: Move Data Between Host and Device

20

Host (serial execution on CPU)

CUDA Device (SIMD execution on GPU)

Host memory address space

Device memory address space

float* A = new float[N];

// populate host address space pointer A
for (int i=0 i<N; i++)
 A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Device Memory Model

• Three distinct types of memory available to kernels

21

Per-thread private memory

(readable/writable by thread)

Per-block shared memory

(readable/writable by all

threads in a block)

Device global memory

(readable/writable by all

threads)

Why shared memory?

Enable cooperation across threads in a block

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Programming Example: 1D Convolution

22

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

1D Convolution (Version 1)

23

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += input[index + i];

 output[index] = result / 3.f;
}

each thread computes

result for one element

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

1D Convolution (Reused Shared Memory)

24

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result / 3.f;
}

All threads cooperatively load

block’s support region from

global into shared memory

(total of 130 loads instead of 3 *

128 loads)

barrier (all threads in block)

each thread computes

result for one element

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Synchronization Primitives

• __syncthreads(): wait for all threads in a block to arrive at this point

• Atomic operations
• e.g., float atomicAdd(float* addr, float amount)

• Atomic operations on both global and shared memory

• Host/device synchronization
• Implicit barrier across all threads at return of kernel

25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Compilation

• Goal: run a CUDA program on various GPUs

26

High-end GPU (16 cores)

Mid-range GPU (6 cores)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Compilation

27

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2));
cudaMalloc(&devOutput, sizeof(float) * N);

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 __shared__ float support[THREADS_PER_BLK+2];
 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result / 3.f;
}

A compiled CUDA device binary includes:

Program text (instructions)

Information about required resources:

• 128 threads per block
• 8 bytes of local data per thread

• 130 floats (520 bytes) of shared space

per thread block

Launch 8K thread blocks

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CUDA Thread Block Scheduling

• Major CUDA assumption: threadblocks
can be executed in any order (no
dependencies between threadblocks)

• GPU maps threadblocks to cores using a
dynamic scheduling policy that respects
resource requirements

28

Grid of 8K convolve thread blocks

(specified by kernel launch)

Block requirements:

• 128 threads

• 520 bytes of shared memory
• 1024 bytes of local memory

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A GPU Core: Streaming Multiprocessor

SMM resource limits:

• Max warp execution contexts: 64 (up to 64 * 32 = 2K total CUDA threads)

• 96 KB of shared memory

29

SIMD functional unit,

control shared across 32 units

(1 MUL-ADD per clock)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a Thread Block on an SMM

• Warp: A group of 32 CUDA threads shared an instruction stream.
• A convolve thread block is executed by 4 warps (4 warps x 32 threads / warp = 128 threads)

• SMM operation each clock:
• Select up to four runnable warps from 64 resident on an SMM (thread-level parallelism)

• Select up to two runnable instructions per warp (instruction-level parallelism)

30

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 520 bytes of shared memory

• Assume the host side launches 1000 thread blocks

• Run the program on a two-SMM GPU

31

#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 1: host sends CUDA kernel to device

32

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for
128 threads and 520 bytes of shared memory)

33

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 3: scheduler continues to map blocks to available execution contexts

34

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 3: scheduler continues to map blocks to available execution contexts

35

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• (third block won’t fit due to insufficient shared storage 3 x 520B > 1.5KB)

36

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 4: thread block 0 completes on core 0

37

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 5: thread block 4 is scheduled on core 0 (mapped to execution
contexts 0-127)

38

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 6: thread block 2 completes on core 0

39

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Running a CUDA Kernel

• Convolve kernel’s requirement:
• Each thread block execute 128 CUDA threads

• Each thread block allocate 130 * 4 = 512 bytes of shared memory

• Step 7: thread block 5 is scheduled on core 0 (mapped to execution
contexts 128-255)

40

GPU Work Scheduler

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

What is a warp?

• A warp is a CUDA implementation
detail on NVIDIA GPUs

• On modern NVIDIA GPUs, groups of
32 CUDA threads in a thread block
are executed simultaneously using
32-wide SIMD execution

41

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recall: An SMM on a NVIDIA GTX 980 (2014)

• SMM resource:
• Map warp execution contexts: 64 (64 * 32 = 2048 total CUDA threads)

• 96 KB of shared memory

42

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

NVIDIA GTX 980 Contains 16 SMMs

43

1.1 GHz clock

16 SMM cores per chip

16 x 4 warps x 32 threads / warp
= 2048 SIMD mul-add ALUs

= 4.6 TFLOPs

Up to 16 x 64 = 1024 interleaved

warps per chip
(32,768 CUDA threads / chip)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GTX 980 (2014) -> H100 (2022)

• SMMs remain the same
• Clock speed: 1064 MHz -> 1110 MHz

• Map warps per SMM: 64 -> 64

• Threads per warp: 32 -> 32

• Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB (H100)

• Streaming multiprocessors: 16 SMMs -> 132 SMMs

• Peak performance 4.6 TFLOPs -> 1000 TFLOPs (mainly because of
tensor cores)

44

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

H100 Architecture
with Tensor Cores

45

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensor Cores

• Matrix multiplication unit in SMM

46

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensor Cores

47

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

• CUDA Programming Abstractions

• CUDA Implementation on Modern GPUs

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

48

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Strawman Implementation of Matmul

• Compute 𝐶 = 𝐴 × 𝐵

• Each thread computes one element

49

A

B

C

N

N

N

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 int y = blockIdx.y * blockDim.y + threadIdx.y;

 result = 0;
 for (int k = 0; k < N; ++k) {
 result += A[x][k] * B[k][y];
 }
 C[x][y] = result;
}

Global memory access per thread: 2*N

Number of threads: 𝑁2

Total global memory access: 𝟐𝑵𝟑

int N = 1024;
dim3 threadsPerBlock(32, 32, 1);
dim3 numBlocks(N/32, N/32, 1);

matmul<<<numBlocks, threadsPerBlock>>>(A, B, C);

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Optimization 1: Thread-Level Register Tiling

• Compute 𝐶 = 𝐴 × 𝐵

• Each thread computes a V x V submatrix

50

A

B

C

V

V

V

N

N

N

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;

 float c[V][V] = {0};
 float a[V], b[V];
 for (int k = 0; k < N; ++k) {
 a[:] = A[xbase*V : xbase*V + V, k];
 b[:] = B[k, ybase*V : ybase*V + V];
 for (int y = 0; y < V; ++y) {
 for (int x = 0; x < V; ++x) {
 c[x][y] += a[x] * b[y];
 }
 }
 }
 C[xbase * V : xbase*V + V, ybase*V : ybase*V + V] = c[:];
}

Global memory access per thread: 2𝑁𝑉
Number of threads: 𝑁2/𝑉2

Total global memory access: 𝟐𝑵𝟑/𝑽

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 __shared__ float sA[S][L], sB[S][L];
 float c[V][V] = {0};
 float a[V], b[V];
 int yblock = blockIdx.y;
 int xblock = blockIdx.x;

 for (int ko = 0; ko < N; ko += S) {
 __syncthreads();
 // needs to be implemented by thread cooperative fetching
 sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
 sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
 __syncthreads();
 for (int ki = 0; ki < S; ++ ki) {
 a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
 b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
 for (int y = 0; y < V; ++y) {
 for (int x = 0; x < V; ++x) {
 c[y][x] += a[y] * b[x];
 }
 }
 }
 }
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
}

Optimization 2: Block-Level Shared Memory Tiling

• A block computes a L x L submatrix

• A thread computes a V x V submatrix
and reuses the matrices in shared
mem

51

A

B

C

L

L

L

L

N

N

S

S

Each thread

compute VxV

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 __shared__ float sA[S][L], sB[S][L];
 float c[V][V] = {0};
 float a[V], b[V];
 int yblock = blockIdx.y;
 int xblock = blockIdx.x;

 for (int ko = 0; ko < N; ko += S) {
 __syncthreads();
 // needs to be implemented by thread cooperative fetching
 sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
 sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
 __syncthreads();
 for (int ki = 0; ki < S; ++ ki) {
 a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
 b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
 for (int y = 0; y < V; ++y) {
 for (int x = 0; x < V; ++x) {
 c[y][x] += a[y] * b[x];
 }
 }
 }
 }
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
}

Analysis of Memory Reuse

52

Global memory access per thread block: 2𝐿𝑁
Number of thread blocks: 𝑁2/𝐿2

Total global memory access: 𝟐𝑵𝟑/𝑳

Shared memory access per thread: 2𝑉𝑁
Number of threads: 𝑁2/𝑉2

Total shared memory access: 𝟐𝑵𝟑/𝑽

A

B

C

L

L

L

L

N

N

S

S

Each thread

compute VxV

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Coorperative Fetching

53

sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];

int nthreads = blockDim.y * blockDim.x;
int tid = threadIdx.y * blockDim.x + threadIdx.x;

for(int j = 0; j < L * S / nthreads; ++j) {
 int y = (j * nthreads + tid) / L;
 int x = (j * nthreads + tid) % L;
 s[y, x] = A[k + y, yblock * L + x];
}

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

• CUDA Programming Abstractions

• CUDA Implementation on Modern GPUs

• Cast Study 1: Matrix Multiplication in CUDA

• Cast Study 2: Parallel Reduction in CUDA

54

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallel Reduction

• Common and important primitive used by many MLSys operators:
normalization, softmax, etc

• Tree-based approach to reduce elements within each thread block

55

3 1

4

7 0

7

11

4 1

5

6 3

9

14

25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Challenges of Parallel Reduction in CUDA

• Task: for a large array of n elements, compute σ𝑖=1
𝑛 𝐴[𝑖]

• To achieve high GPU utilization
• Need to use multiple thread blocks (since a block is assigned to one SMM)

• Each thread block reduces a portion of the array

• How to communicate partial results between thread blocks?

56

3 1

4

7 0

7

11

4 1

5

6 3

9

14

25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Problem: CUDA has no Global Synchronization

Recall CUDA assumption: thread blocks can be executed in any order,
cannot sync between them

Why?

• Expensive to build hardware for GPUs with high processor count

• Potential deadlock when # blocks > # multiprocessors * # resident blocks

Solution: decompose into multiple kernels

• Kernel launch serves a global synchronization

• Kernel launch has very low hardware/software overhead

57

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Solution: Kernel Decomposition

• Avoid global synchronization by decompose computation into multiple
kernel invocations

• Code for all levels is the same

58

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 1: Interleaved Addressing

59

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 1: Interleaved Addressing

60

__global__ void reduce0(int *g_idata, int *g_odata) {
 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Why we need the two

__syncthreads?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 1: Interleaved Addressing

61

__global__ void reduce0(int *g_idata, int *g_odata) {
 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Problem: highly

divergent warps

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 1: Divergent Warps

62

for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0)
 sdata[tid] += sdata[tid + s];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T F T F T F T F T F T F T F T Fs=1

T F F F T F F F T F F F T F F Fs=2

T F F F F F F F T F F F F F F Fs=4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 2: Strided Index and Non-divergent warp

63

for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

for(unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 *s * threadIdx.x;
 if (index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

Replace divergent branch with strided

index and non-divergent branch

Original

Version

Optimized

Version

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 2: Strided Index and Non-divergent warp

64

for(unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 *s * threadIdx.x;
 if (index < blockDim.x)
 sdata[index] += sdata[index + s];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T F F F F F F F Fs=1

T T T T F F F F F F F F F F F Fs=2

T T F F F F F F F F F F F F F Fs=4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Coalesced Memory Access

• Multiple GPU threads access consecutive memory addresses

• Maximize GPU memory usage

65

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4
first load

second load
third load

coalesced access (optimal usage)

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4
first load

second load
third load

Non-coalesced access (suboptimal usage)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 1: Interleaved Addressing

66

Suboptimal memory accesses

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 2: Sequential Addressing

67

Fully coalesced memory access

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Version 2: Sequential Addressing

68

for(unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 *s * threadIdx.x;
 if (index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

Original

Version

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
 if (threadIdx.x < s) {
 sdata[threadIdx.x] += sdata[threadIdx.x + s];
 }
 __syncthreads();
 }

Original

Version

Replace strided index with reversed

loop and threadId-based index

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap

• CUDA programming and GPU architecture

• GPU optimization techniques:
• Coherence warps

• Coalesced memory access

• Shared memory bank conflict

• Warp level optimizations

• Tensor core

69

	Slide 1: 15-442/15-642: Machine Learning Systems GPU Architecture & CUDA Programming
	Slide 2: Single Instruction, Multiple Data
	Slide 3: Single Instruction, Multiple Data
	Slide 4: Massive Parallel Computing Units
	Slide 5: Outline
	Slide 6: CUDA Programming Language
	Slide 7: CUDA Programs Consist of a Hierarchy of Threads
	Slide 8: CUDA Blocks Map to GPU Cores (Streaming Multiprocessors)
	Slide 9: Grid, Block, and Thread
	Slide 10: Basic CUDA syntax
	Slide 11: Clear Separation of Host and Device Code
	Slide 12: Number of SIMD Threads is Explicit in Program
	Slide 13: What about Conditional Execution?
	Slide 14: What about Conditional Execution?
	Slide 15: Mask (discard) Output of ALU
	Slide 16: After Branch: Continue at Full Performance
	Slide 17: Terminology
	Slide 18: CUDA Memory Model
	Slide 19: CUDA Memory Model
	Slide 20: cudaMemcpy: Move Data Between Host and Device
	Slide 21: CUDA Device Memory Model
	Slide 22: CUDA Programming Example: 1D Convolution
	Slide 23: 1D Convolution (Version 1)
	Slide 24: 1D Convolution (Reused Shared Memory)
	Slide 25: CUDA Synchronization Primitives
	Slide 26: CUDA Compilation
	Slide 27: CUDA Compilation
	Slide 28: CUDA Thread Block Scheduling
	Slide 29: A GPU Core: Streaming Multiprocessor
	Slide 30: Running a Thread Block on an SMM
	Slide 31: Running a CUDA Kernel
	Slide 32: Running a CUDA Kernel
	Slide 33: Running a CUDA Kernel
	Slide 34: Running a CUDA Kernel
	Slide 35: Running a CUDA Kernel
	Slide 36: Running a CUDA Kernel
	Slide 37: Running a CUDA Kernel
	Slide 38: Running a CUDA Kernel
	Slide 39: Running a CUDA Kernel
	Slide 40: Running a CUDA Kernel
	Slide 41: What is a warp?
	Slide 42: Recall: An SMM on a NVIDIA GTX 980 (2014)
	Slide 43: NVIDIA GTX 980 Contains 16 SMMs
	Slide 44: GTX 980 (2014) -> H100 (2022)
	Slide 45: H100 Architecture with Tensor Cores
	Slide 46: Tensor Cores
	Slide 47: Tensor Cores
	Slide 48: Outline
	Slide 49: Strawman Implementation of Matmul
	Slide 50: Optimization 1: Thread-Level Register Tiling
	Slide 51: Optimization 2: Block-Level Shared Memory Tiling
	Slide 52: Analysis of Memory Reuse
	Slide 53: Coorperative Fetching
	Slide 54: Outline
	Slide 55: Parallel Reduction
	Slide 56: Challenges of Parallel Reduction in CUDA
	Slide 57: Problem: CUDA has no Global Synchronization
	Slide 58: Solution: Kernel Decomposition
	Slide 59: Version 1: Interleaved Addressing
	Slide 60: Version 1: Interleaved Addressing
	Slide 61: Version 1: Interleaved Addressing
	Slide 62: Version 1: Divergent Warps
	Slide 63: Version 2: Strided Index and Non-divergent warp
	Slide 64: Version 2: Strided Index and Non-divergent warp
	Slide 65: Coalesced Memory Access
	Slide 66: Version 1: Interleaved Addressing
	Slide 67: Version 2: Sequential Addressing
	Slide 68: Version 2: Sequential Addressing
	Slide 69: Recap

