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Recap: Elements of Machine Learning

• Model(hypothesis) class 
A parameterized function that describes 
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given 
set of parameters

• Training (optimization) method
A procedure to find a set of 
parameters that minimizes the loss

4

Logistic regression model

Regularized loss function

Stochastic gradient descentComputing the loss function gradient with respect 
to hypothesis class parameters is the most 
common operation in machine learning
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Numerical Differentiation

Directly compute the partial gradient by definition

A more numerically accurate way to approximate the gradient

Suffer from numerical error, less efficient to compute
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𝜕𝑓 𝜃
𝜕𝜃!

= lim
"→$

𝑓 𝜃 + 𝜖𝑒! − 𝑓(𝜃)	
𝜖

𝜕𝑓 𝜃
𝜕𝜃!

=
𝑓 𝜃 + 𝜖𝑒! − 𝑓(𝜃 − 𝜖𝑒!)	

2𝜖 + 𝑜(𝜖%)
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Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement 
of an automatic differentiation algorithm in unit test cases

Pick 𝛿 from unit ball, check the above invariance.
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𝛿1∇2𝑓 𝜃 	=
𝑓 𝜃 + 𝜖𝛿 − 𝑓(𝜃 − 𝜖𝛿)	

2𝜖
+ 𝑜 𝜖3 	
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Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

Naively do so can result in wasted computations

Example:   
     

                                                   
Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients
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Recap: Computational Graph
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y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

Forward evaluation trace

𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

Each node represent an (intermediate) value in the 
computation. Edges present input output relations.

Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018
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Forward Mode Automatic Differentiation (AD)
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Define ̇𝑣! =
&8!
&9"

Forward evaluation trace
𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

̇𝑣. = 1
̇𝑣% = 0
̇𝑣3 = ̇𝑣./𝑣. = 0.5
̇𝑣4 = ̇𝑣.𝑣% + ̇𝑣%𝑣. = 1×5 + 0×2 = 5
̇𝑣6 = ̇𝑣%cos 𝑣% = 0×cos 5 = 0	
̇𝑣5 = ̇𝑣3 + ̇𝑣4 =0.5 + 5 = 5.5
̇𝑣7 = ̇𝑣5 − ̇𝑣6 =5.5 − 0 = 5.5

Forward AD trace

&:
&9"

= ̇𝑣7 = 5.5 

We can then compute the ̇𝑣! iteratively in the forward
topological order of the computational graph

Now we have
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Limitations of Forward Mode AD

• For 𝑓:ℝ! → ℝ", we need 𝑛 forward AD passes to get the 
gradient with respect to each input.

• We mostly care about the cases where 𝑘 = 1 and large 𝑛	.

• In order to resolve the problem efficiently, we need to use 
another kind of AD.

10
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Reverse Mode Automatic Differentiation(AD)
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Define adjoint J𝑣! =
&:
&8!

Forward evaluation trace
𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

We can then compute the J𝑣! 	iteratively in the reverse
topological order of the computational graph

Reverse AD evaluation trace

𝑣! =
𝜕𝑦
𝜕𝑣!

= 1

𝑣" = 𝑣!
𝜕𝑣!
𝜕𝑣"

= 𝑣!×1 = 1

𝑣# = 𝑣!
𝜕𝑣!
𝜕𝑣#

= 𝑣!× −1 = −1

𝑣$ = 𝑣"
𝜕𝑣"
𝜕𝑣$

= 𝑣"×1 = 1

𝑣% = 𝑣"
𝜕𝑣"
𝜕𝑣%

= 𝑣"×1 = 1

𝑣& = 𝑣#
𝜕𝑣#
𝜕𝑣&

+ 𝑣$
𝜕𝑣$
𝜕𝑣&

= 𝑣#×cos 𝑣& + 𝑣$×𝑣' = −0.284 + 2 = 1.716

𝑣' = 𝑣$
𝜕𝑣$
𝜕𝑣'

+ 𝑣%
𝜕𝑣%
𝜕𝑣'

= 𝑣$ ×𝑣& + 𝑣%
1
𝑣'
= 5 +

1
2
= 5.5
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Derivation for the Multiple Pathway Case
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y𝑣. 𝑣%

𝑣3

𝑣4

𝑣. is being used in multiple pathways (𝑣% and 𝑣3)  

𝑣. = &:
&8"

 = &((8#,8$)
&8#

&8#
&8"

+ &((8#,8$)
&8$

&8$
&8"

= 𝑣%
&8#
&8"

 + 𝑣3
&8$
&8"

 

y can be written in the form of y = f(v%, v3) 

Define partial adjoint 𝑣!→1 =	 J𝑣1
𝜕𝑣1
𝜕𝑣!

for each input output node pair 𝑖	and 𝑗 

J𝑣! =	 N
1∈/=9>(!)

𝑣!→1

We can compute partial adjoints separately then sum them together
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Reverse AD Algorithm

14

def gradient(out):
      node_to_grad = {out:  [1]}

   for 𝑖 in reverse_topo_order(out):
  	𝑣! =	∑" 𝑣!→" = sum(node_to_grad[𝑖])

       for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
     compute 𝑣$→! = /𝑣!

%&!
%&"

           append 𝑣$→! to node_to_grad[𝑘] 

    return adjoint of input 𝑣!'()*

Dictionary that records a list of 
partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints
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Reverse Mode AD by Extending Computational Graph
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𝑣.

𝑣%

𝑣3

𝑣4

exp

×

+

1

Our previous examples compute adjoint values directly by hand. 
How can we construct a computational graph that calculates the adjoint values?

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>
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Reverse mode AD by extending computational graph
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𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

×

+

1

1
𝑖 = 4
node_to_grad: {
  4: [𝑣4]
}

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>
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𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣&→$ 𝑣3
× ×

×
+

1

1
𝑖 = 4
node_to_grad: {
  2: [𝑣%→4]
    3: [𝑣3]
    4: [𝑣4]
}

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>

Reverse Mode AD by Extending Computational Graph
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𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣&→$ 𝑣3

𝑣&→%
id

× ×
×

+

1

1

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>

𝑖 = 3
node_to_grad: {
  2: [𝑣%→4, 𝑣%→3]
    3: [𝑣3]
    4: [𝑣4]
}

Reverse Mode AD by Extending Computational Graph
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𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

× ×
×

+

+
1

1

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>

𝑖 = 2 
node_to_grad: {
  2: [𝑣%→4, 𝑣%→3]
    3: [𝑣3]
    4: [𝑣4]
}

Reverse Mode AD by Extending Computational Graph
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𝑖 = 2 
node_to_grad: {
  1: [𝑣.]
  2: [𝑣%→4, 𝑣%→3]
    3: [𝑣3]
    4: [𝑣4]
} 20

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

𝑣.

× ×
×

×

+

+
1

1

def gradient(out):
    node_to_grad = {out:  [1]}
  for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
        compute 𝑣0→! = J𝑣!

&8!
&8"

        append 𝑣0→! to node_to_grad[𝑘] 
    return adjoint of input 𝑣!/?@>

Reverse Mode AD by Extending Computational Graph
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𝑣.

𝑣%

𝑣3

𝑣4

exp

×

+

1

Backprop Reverse mode AD by 
extending computational graph

• Run backward operations the same forward graph
• Used in first generation deep learning 

frameworks (caffe, cuda-convnet)

• Construct separate graph nodes for adjoints
• Used by modern deep learning frameworks

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

𝑣.

× ×
×

×

+

+
1

1

Reverse Mode AD vs Backprop
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y𝑋 𝑣

𝑊

Define adjoint for tensor values �̅� =

&:
&A#,#

… &:
&A#,%… … …

&:
&A&,#

… &:
&A&,%

Scalar outputmatrix

𝑍
matmul

Forward evaluation trace Reverse evaluation in scalar form

𝑋!,0 =N
1

𝜕𝑍!,1
𝜕𝑋!,0

�̅�!,1 =N
1

𝑊0,1�̅�!,1

𝑓

𝑍!1 =N
0

𝑋!0𝑊01

𝑣 = 𝑓(𝑍)

Forward matrix form

𝑍 = 𝑋𝑊
𝑣 = 𝑓(𝑍)

b𝑋 = �̅�𝑊B

Reverse matrix form

Reverse mode AD on Tensors
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Reverse AD Algorithm

23

def gradient(out):
      node_to_grad = {out:  [1]}

   for 𝑖 in reverse_topo_order(out):
  	𝑣! =	∑" 𝑣!→" = sum(node_to_grad[𝑖])

       for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
         compute 𝑣$→! = /𝑣!

%&!
%&"

           append 𝑣$→! to node_to_grad[𝑘] 

    return adjoint of input 𝑣!'()*

Dictionary that records a list of 
partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussions

What are the pros/cons of backprop and reverse mode AD

24
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Handling Gradient of Gradient

• The result of reverse mode AD is still a computational graph

• We can extend that graph further by composing more operations and run 
reverse mode AD again on the gradient

• Part of homework 1

25
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y𝑑 𝑣 Define adjoint data structure 

�̅� ={“cat”: &:
&C'

, “dog”:
&:
&.
}

𝑏
lookup(“cat”)

Reverse evaluation

𝑓

𝑑 = {“cat”: 𝑎+, “dog”:	𝑎,}
𝑏 = 𝑑 [“cat”]
𝑣 = 𝑓(𝑏)

Forward evaluation trace

8𝑏 = %&
%-

 �̅�  
�̅� = {“cat”: 8𝑏 }

• Key take away: Define “adjoint value” usually in the same data type as the forward value and 
adjoint propagation rule. Then the sample algorithm works.

• Do not need to support the general form in our framework, but we may support “tuple values”

Reverse Mode AD on Data Structures


