15-442/15-642: Machine Learning Systems

Automatic Differentiation

Spring 2024

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

Recap: Elements of Machine Learning

- Model(hypothesis) class

A parameterized function that describes how do we map inputs to predictions

- Loss function

How "well" are we doing for a given set of parameters

- Training (optimization) method A procedure to find a set of parameters that minimizes the loss

Computing the loss function gradient with respect to hypothesis class parameters is the most common operation in machine learning

Logistic regression model

$$
L(w)=\sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}\right)+\lambda\|w\|^{2}
$$

Regularized loss function

Stochastic gradient descent

Numerical Differentiation

Directly compute the partial gradient by definition

$$
\frac{\partial f(\theta)}{\partial \theta_{i}}=\lim _{\epsilon \rightarrow 0} \frac{f\left(\theta+\epsilon e_{i}\right)-f(\theta)}{\epsilon}
$$

A more numerically accurate way to approximate the gradient

$$
\frac{\partial f(\theta)}{\partial \theta_{i}}=\frac{f\left(\theta+\epsilon e_{i}\right)-f\left(\theta-\epsilon e_{i}\right)}{2 \epsilon}+o\left(\epsilon^{2}\right)
$$

Suffer from numerical error, less efficient to compute

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement of an automatic differentiation algorithm in unit test cases

$$
\delta^{T} \nabla_{\theta} f(\theta)=\frac{f(\theta+\epsilon \delta)-f(\theta-\epsilon \delta)}{2 \epsilon}+o\left(\epsilon^{2}\right)
$$

Pick δ from unit ball, check the above invariance.

Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

$$
\frac{\partial(f(\theta)+g(\theta))}{\partial \theta}=\frac{\partial f(\theta)}{\partial \theta}+\frac{\partial g(\theta)}{\partial \theta} \quad \frac{\partial(f(\theta) g(\theta))}{\partial \theta}=\mathrm{g}(\theta) \frac{\partial f(\theta)}{\partial \theta}+\mathrm{f}(\theta) \frac{\partial g(\theta)}{\partial \theta} \quad \frac{\partial f(g(\theta))}{\partial \theta}=\frac{\partial f(g(\theta))}{\partial g(\theta)} \frac{\partial g(\theta)}{\partial \theta}
$$

Naively do so can result in wasted computations
Example:

$$
f(\theta)=\prod_{i=1}^{n} \theta_{i} \quad \frac{f(\theta)}{\partial \theta_{k}}=\prod_{j \neq k}^{n} \theta_{j}
$$

Cost $n(n-2)$ multiplies to compute all partial gradients

Recap: Computational Graph

$$
\mathrm{y}=\mathrm{f}\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+x_{1} x_{2}-\sin x_{2}
$$

Forward evaluation trace

$$
\begin{aligned}
& v_{1}=x_{1}=2 \\
& v_{2}=x_{2}=5 \\
& v_{3}=\ln v_{1}=\ln 2=0.693 \\
& v_{4}=v_{1} \times v_{2}=10 \\
& v_{5}=\sin v_{2}=\sin 5=-0.959 \\
& v_{6}=v_{3}+v_{4}=10.693 \\
& v_{7}=v_{6}-v_{5}=10.693+0.959=11.652 \\
& y=v_{7}=11.652
\end{aligned}
$$

Each node represent an (intermediate) value in the computation. Edges present input output relations.

Forward Mode Automatic Differentiation (AD)

$\mathrm{y}=\mathrm{f}\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+x_{1} x_{2}-\sin x_{2}$

Forward evaluation trace

$$
\begin{aligned}
& v_{1}=x_{1}=2 \\
& v_{2}=x_{2}=5 \\
& v_{3}=\ln v_{1}=\ln 2=0.693 \\
& v_{4}=v_{1} \times v_{2}=10 \\
& v_{5}=\sin v_{2}=\sin 5=-0.959 \\
& v_{6}=v_{3}+v_{4}=10.693 \\
& v_{7}=v_{6}-v_{5}=10.693+0.959=11.652 \\
& y=v_{7}=11.652
\end{aligned}
$$

Define $\dot{v}_{i}=\frac{\partial v_{i}}{\partial x_{1}}$
We can then compute the \dot{v}_{i} iteratively in the forward topological order of the computational graph

Forward AD trace

$$
\begin{aligned}
& \dot{v_{1}}=1 \\
& \dot{v_{2}}=0 \\
& \dot{v}_{3}=\dot{v}_{1} / v_{1}=0.5 \\
& \dot{v_{4}}=\dot{v}_{1} v_{2}+\dot{v}_{2} v_{1}=1 \times 5+0 \times 2=5 \\
& \dot{v}_{5}=\dot{v}_{2} \cos v_{2}=0 \times \cos 5=0 \\
& \dot{v_{6}}=\dot{v}_{3}+\dot{v}_{4}=0.5+5=5.5 \\
& \dot{v_{7}}=\dot{v}_{6}-\dot{v}_{5}=5.5-0=5.5
\end{aligned}
$$

Now we have $\frac{\partial y}{\partial x_{1}}=\dot{v}_{7}=5.5$

Limitations of Forward Mode AD

- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, we need n forward AD passes to get the gradient with respect to each input.
- We mostly care about the cases where $k=1$ and large n.
- In order to resolve the problem efficiently, we need to use another kind of AD.

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

Reverse Mode Automatic Differentiation(AD)

$$
\mathrm{y}=\mathrm{f}\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+x_{1} x_{2}-\sin x_{2}
$$

Forward evaluation trace

$$
\begin{aligned}
& v_{1}=x_{1}=2 \\
& v_{2}=x_{2}=5 \\
& v_{3}=\ln v_{1}=\ln 2=0.693 \\
& v_{4}=v_{1} \times v_{2}=10 \\
& v_{5}=\sin v_{2}=\sin 5=-0.959 \\
& v_{6}=v_{3}+v_{4}=10.693 \\
& v_{7}=v_{6}-v_{5}=10.693+0.959=11.652 \\
& y=v_{7}=11.652
\end{aligned}
$$

Define adjoint $\bar{v}_{i}=\frac{\partial y}{\partial v_{i}}$
We can then compute the \bar{v}_{i} iteratively in the reverse topological order of the computational graph

Reverse AD evaluation trace

$$
\begin{aligned}
& \overline{v_{7}}=\frac{\partial y}{\partial v_{7}}=1 \\
& \overline{v_{6}}=\overline{v_{7}} \frac{\partial v_{7}}{\partial v_{6}}=\overline{v_{7}} \times 1=1 \\
& \overline{v_{5}}=\overline{v_{7}} \frac{\partial v_{7}}{\partial v_{5}}=\overline{v_{7}} \times(-1)=-1 \\
& \overline{v_{4}}=\overline{v_{6}} \frac{\partial v_{6}}{\partial v_{4}}=\overline{v_{6}} \times 1=1 \\
& \overline{v_{3}}=\overline{v_{6}} \frac{\partial v_{6}}{\partial v_{3}}=\overline{v_{6}} \times 1=1 \\
& \overline{v_{2}}=\overline{v_{5}} \frac{\partial v_{5}}{\partial v_{2}}+\overline{v_{4}} \frac{\partial v_{4}}{\partial v_{2}}=\overline{v_{5}} \times \cos v_{2}+\overline{v_{4}} \times v_{1}=-0.284+2=1.716 \\
& \overline{v_{1}}=\overline{v_{4}} \frac{\partial v_{4}}{\partial v_{1}}+\overline{v_{3}} \frac{\partial v_{3}}{\partial v_{1}}=\overline{v_{4}} \times v_{2}+\overline{v_{3}} \frac{1}{v_{1}}=5+\frac{1}{2}=5.5
\end{aligned}
$$

Derivation for the Multiple Pathway Case

v_{1} is being used in multiple pathways (v_{2} and v_{3})

y can be written in the form of $y=f\left(v_{2}, v_{3}\right)$

$$
\overline{v_{1}}=\frac{\partial y}{\partial v_{1}}=\frac{\partial f\left(v_{2}, v_{3}\right)}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{1}}+\frac{\partial f\left(v_{2}, v_{3}\right)}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{1}}=\overline{v_{2}} \frac{\partial v_{2}}{\partial v_{1}}+\overline{v_{3}} \frac{\partial v_{3}}{\partial v_{1}}
$$

Define partial adjoint $\overline{v_{i \rightarrow j}}=\overline{v_{j}} \frac{\partial v_{j}}{\partial v_{i}}$ for each input output node pair i and j

$$
\overline{v_{i}}=\sum_{j \in n e x t(i)} \overline{v_{i \rightarrow j}}
$$

We can compute partial adjoints separately then sum them together

Reverse AD Algorithm

```
def gradient(out):
    node_to_grad = {out: [1]}
        Dictionary that records a list of
    for i in reverse_topo_order(out):
        \overline{v}
        & Sum up partial adjoints
        for k}\in\mathrm{ inputs(i):
            compute \overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}}
            append }\overline{\mp@subsup{v}{k->i}{}}\mathrm{ to node_to_grad[k]
    return adjoint of input \overline{v}}\overline{\mp@subsup{v}{\mathrm{ input }}{}
```


Reverse Mode AD by Extending Computational Graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\in\operatorname{inputs(i):
            compute \overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}}
            append }\overline{\mp@subsup{v}{k->i}{}}\mathrm{ to node_to_grad[k]
        return adjoint of input \overline{vinput}
```


Our previous examples compute adjoint values directly by hand.
How can we construct a computational graph that calculates the adjoint values?

Reverse mode AD by extending computational graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\in\mathrm{ inputs(i):
            compute }\overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}
            append \overline{v}k->i}\mathrm{ to node_to_grad[k]
        return adjoint of input }\overline{\mp@subsup{v}{\mathrm{ input }}{}
```

```
i=4
node_to_grad: {
    4: [\overline{v}
}
```


Reverse Mode AD by Extending Computational Graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\in\mathrm{ inputs(i):
            compute \overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}}
            append \overline{v}k->i}\mathrm{ to node_to_grad[k]
        return adjoint of input }\overline{\mp@subsup{v}{\mathrm{ input }}{}
```

```
i=4
node_to_grad: {
    2: [\overline{v}\mp@subsup{v}{2->4}{}}
    3: [该]
    4: [谟]
}
```


Reverse Mode AD by Extending Computational Graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\ininputs(i)
            compute }\overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}
            append \overline{\mp@subsup{v}{k->i}{}}\mathrm{ to node_to_grad[k]}
    return adjoint of input \overline{vinput}
```

```
i=3
node_to_grad: {
    3: [\overline{v}
    4: [\overline{\mp@subsup{v}{4}{}}]
}
```


Reverse Mode AD by Extending Computational Graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\ininputs(i)
            compute \overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}}
            append \overline{\mp@subsup{v}{k->i}{}}\mathrm{ to node_to_grad[k]}
        return adjoint of input \overline{v}}\overline{\mp@subsup{v}{input}{}
```

$i=2$
node_to_grad: $\{$
2: $\left[\overline{v_{2 \rightarrow 4}}, \overline{v_{2 \rightarrow 3}}\right]$
3: [$\left.\overline{v_{3}}\right]$
4: $\left[\overline{v_{4}}\right]$
\}

Reverse Mode AD by Extending Computational Graph

```
def gradient(out):
    node_to_grad = {out: [1]}
    for i in reverse_topo_order(out):
        \overline{v}
        for }k\in\mathrm{ inputs(i):
            compute \overline{\mp@subsup{v}{k->i}{}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}}
            append \overline{v}k->i
        return adjoint of input \overline{v}
```

```
i=2
node_to_grad: {
    1: [\overline{v}
```



```
    3: [该]
    4: [\overline{v}
}
```


Reverse Mode AD vs Backprop

Reverse mode AD by extending computational graph

- Construct separate graph nodes for adjoints
- Used by modern deep learning frameworks

Reverse mode AD on Tensors

$$
\text { Define adjoint for tensor values } \bar{Z}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial z_{1,1}} & \ldots & \frac{\partial y}{\partial z_{1, n}} \\
\cdots & \ldots & \ldots \\
\frac{\partial y}{\partial z_{m, 1}} & \cdots & \frac{\partial y}{\partial z_{m, n}}
\end{array}\right]
$$

Forward evaluation trace

$$
\begin{aligned}
& Z_{i j}=\sum_{k} X_{i k} W_{k j} \\
& v=f(Z)
\end{aligned}
$$

Reverse evaluation in scalar form

$$
\overline{X_{i, k}}=\sum_{j} \frac{\partial Z_{i, j}}{\partial X_{i, k}} \bar{Z}_{i, j}=\sum_{j} W_{k, j} \bar{Z}_{i, j}
$$

Forward matrix form

$$
\begin{aligned}
& Z=X W \\
& v=f(Z)
\end{aligned}
$$

Reverse AD Algorithm

```
def gradient(out):
    node_to_grad = {out: [1]}
        Dictionary that records a list of
    for i in reverse_topo_order(out):
        \overline{v}
        & Sum up partial adjoints
        for k}\in\operatorname{inputs(i):
            compute \overline{v,i}}=\overline{\mp@subsup{v}{i}{}}\frac{\partial\mp@subsup{v}{i}{}}{\partial\mp@subsup{v}{k}{}
            append }\overline{\mp@subsup{v}{k->i}{}}\mathrm{ to node_to_grad[k]
    return adjoint of input \overline{v}}\overline{\mp@subsup{v}{\mathrm{ input }}{}
```


Discussions

What are the pros/cons of backprop and reverse mode AD

Handling Gradient of Gradient

- The result of reverse mode AD is still a computational graph
- We can extend that graph further by composing more operations and run reverse mode AD again on the gradient
- Part of homework 1

Reverse Mode AD on Data Structures

Define adjoint data structure

$$
\bar{d}=\left\{\text { "cat" }: \frac{\partial y}{\partial a_{0}}, " \text { dog": } \frac{\partial y}{\partial 1}\right\}
$$

Forward evaluation trace

$$
\begin{aligned}
& d=\left\{\text { "cat": } a_{0}, \text { "dog": } a_{1}\right\} \\
& b=d[\text { "cat"] } \\
& v=f(b)
\end{aligned}
$$

Reverse evaluation

$$
\begin{aligned}
& \bar{b}=\frac{\partial v}{\partial b} \bar{v} \\
& \bar{d}=\{" c a t ": \bar{b}\}
\end{aligned}
$$

- Key take away: Define "adjoint value" usually in the same data type as the forward value and adjoint propagation rule. Then the sample algorithm works.
- Do not need to support the general form in our framework, but we may support "tuple values"

