15-442/15-642: Machine Learning Systems

Automatic Differentiation

Spring 2024

Tianqi Chen and Zhihao Jia Carnegie Mellon University

General introduction to different differentiation methods

Reverse mode automatic differentiation

General introduction to different differentiation methods

Reverse mode automatic differentiation

Recap: Elements of Machine Learning

- Model(hypothesis) class
 A parameterized function that describes
 - how do we map inputs to predictions
- Loss function How "well" are we doing for a given set of parameters
- Training (optimization) method A procedure to find a set of parameters that minimizes the loss

Computing the loss function gradient with respect to hypothesis class parameters is the most common operation in machine learning

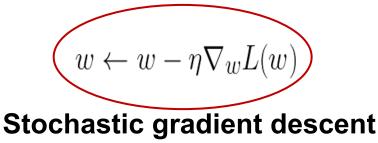
Logistic regression model

 $feature_1$...

 $x_i =$

$$L(w) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \lambda ||w||^2$$

Regularized loss function



Numerical Differentiation

Directly compute the partial gradient by definition

$$\frac{\partial f(\theta)}{\partial \theta_i} = \lim_{\epsilon \to 0} \frac{f(\theta + \epsilon e_i) - f(\theta)}{\epsilon}$$

A more numerically accurate way to approximate the gradient

$$\frac{\partial f(\theta)}{\partial \theta_i} = \frac{f(\theta + \epsilon e_i) - f(\theta - \epsilon e_i)}{2\epsilon} + o(\epsilon^2)$$

Suffer from numerical error, less efficient to compute

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement of an automatic differentiation algorithm in unit test cases

$$\delta^T \nabla_{\theta} f(\theta) = \frac{f(\theta + \epsilon \delta) - f(\theta - \epsilon \delta)}{2\epsilon} + o(\epsilon^2)$$

Pick δ from unit ball, check the above invariance.

Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

 $\frac{\partial (f(\theta) + g(\theta))}{\partial \theta} = \frac{\partial f(\theta)}{\partial \theta} + \frac{\partial g(\theta)}{\partial \theta} \qquad \frac{\partial (f(\theta)g(\theta))}{\partial \theta} = g(\theta)\frac{\partial f(\theta)}{\partial \theta} + f(\theta)\frac{\partial g(\theta)}{\partial \theta} \qquad \frac{\partial f(g(\theta))}{\partial \theta} = \frac{\partial f(g(\theta))}{\partial g(\theta)}\frac{\partial g(\theta)}{\partial \theta}$ Naively do so can result in wasted computations

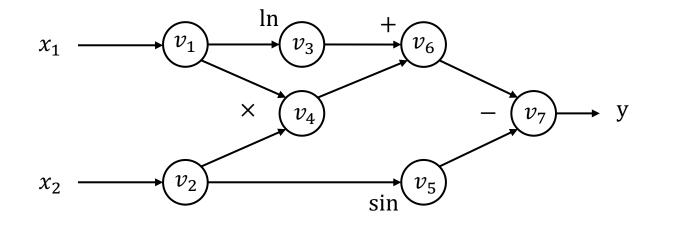
Example:

$$f(\theta) = \prod_{i=1}^{n} \theta_i$$
 $\frac{f(\theta)}{\partial \theta_k} = \prod_{j \neq k}^{n} \theta_j$

Cost n(n-2) multiplies to compute all partial gradients

Recap: Computational Graph

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin x_2$$



Each node represent an (intermediate) value in the computation. Edges present input output relations.

Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

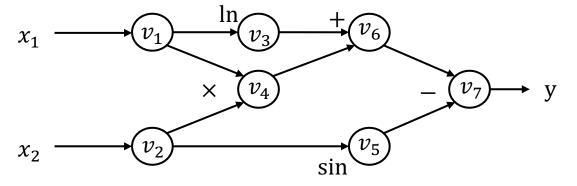
$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

Forward Mode Automatic Differentiation (AD)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin x_2$$



Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

Define
$$\dot{v}_i = \frac{\partial v_i}{\partial x_1}$$

We can then compute the \dot{v}_i iteratively in the forward topological order of the computational graph

Forward AD trace

$$\begin{aligned} \dot{v}_1 &= 1\\ \dot{v}_2 &= 0\\ \dot{v}_3 &= \dot{v}_1 / v_1 = 0.5\\ \dot{v}_4 &= \dot{v}_1 v_2 + \dot{v}_2 v_1 = 1 \times 5 + 0 \times 2 = 5\\ \dot{v}_5 &= \dot{v}_2 \cos v_2 = 0 \times \cos 5 = 0\\ \dot{v}_6 &= \dot{v}_3 + \dot{v}_4 = 0.5 + 5 = 5.5\\ \dot{v}_7 &= \dot{v}_6 - \dot{v}_5 = 5.5 - 0 = 5.5 \end{aligned}$$

Now we have
$$\frac{\partial y}{\partial x_1} = \dot{v}_7 = 5.5$$

Limitations of Forward Mode AD

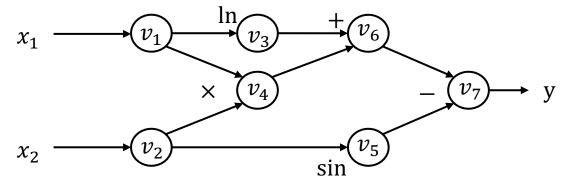
- For $f: \mathbb{R}^n \to \mathbb{R}^k$, we need *n* forward AD passes to get the gradient with respect to each input.
- We mostly care about the cases where k = 1 and large n.
- In order to resolve the problem efficiently, we need to use another kind of AD.

General introduction to different differentiation methods

Reverse mode automatic differentiation

Reverse Mode Automatic Differentiation(AD)

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin x_2$$



Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

Define adjoint $\overline{v_i} = \frac{\partial y}{\partial v_i}$

We can then compute the $\overline{v_i}$ iteratively in the **reverse** topological order of the computational graph

Reverse AD evaluation trace

$$\overline{v_{7}} = \frac{\partial y}{\partial v_{7}} = 1$$

$$\overline{v_{6}} = \overline{v_{7}} \frac{\partial v_{7}}{\partial v_{6}} = \overline{v_{7}} \times 1 = 1$$

$$\overline{v_{5}} = \overline{v_{7}} \frac{\partial v_{7}}{\partial v_{5}} = \overline{v_{7}} \times (-1) = -1$$

$$\overline{v_{4}} = \overline{v_{6}} \frac{\partial v_{6}}{\partial v_{4}} = \overline{v_{6}} \times 1 = 1$$

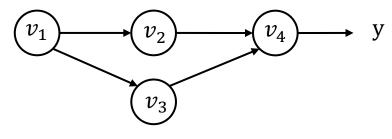
$$\overline{v_{3}} = \overline{v_{6}} \frac{\partial v_{6}}{\partial v_{3}} = \overline{v_{6}} \times 1 = 1$$

$$\overline{v_{2}} = \overline{v_{5}} \frac{\partial v_{5}}{\partial v_{2}} + \overline{v_{4}} \frac{\partial v_{4}}{\partial v_{2}} = \overline{v_{5}} \times \cos v_{2} + \overline{v_{4}} \times v_{1} = -0.284 + 2 = 1.716$$

$$\overline{v_{1}} = \overline{v_{4}} \frac{\partial v_{4}}{\partial v_{1}} + \overline{v_{3}} \frac{\partial v_{3}}{\partial v_{1}} = \overline{v_{4}} \times v_{2} + \overline{v_{3}} \frac{1}{v_{1}} = 5 + \frac{1}{2} = 5.5$$

Derivation for the Multiple Pathway Case

 v_1 is being used in multiple pathways (v_2 and v_3)



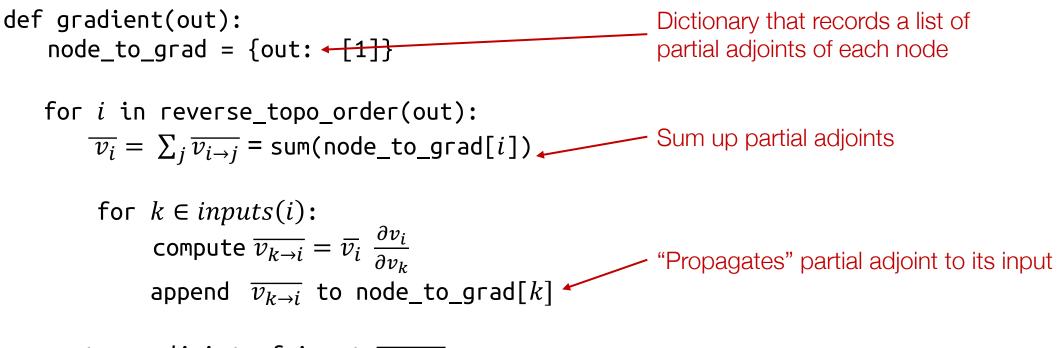
y can be written in the form of $y = f(v_2, v_3)$

$$\overline{v_1} = \frac{\partial y}{\partial v_1} = \frac{\partial f(v_2, v_3)}{\partial v_2} \frac{\partial v_2}{\partial v_1} + \frac{\partial f(v_2, v_3)}{\partial v_3} \frac{\partial v_3}{\partial v_1} = \overline{v_2} \frac{\partial v_2}{\partial v_1} + \overline{v_3} \frac{\partial v_3}{\partial v_1}$$

Define partial adjoint $\overline{v_{i \to j}} = \overline{v_j} \frac{\partial v_j}{\partial v_i}$ for each input output node pair *i* and *j* $\overline{v_i} = \sum_{j \in next(i)} \overline{v_{i \to j}}$

We can compute partial adjoints separately then sum them together

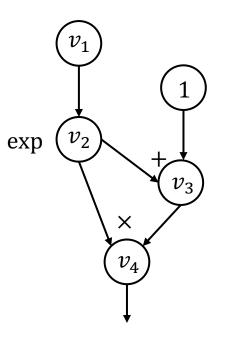
Reverse AD Algorithm



return adjoint of input $\overline{v_{input}}$

def gradient(out):
 node_to_grad = {out: [1]}
 for i in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \operatorname{sum}(\operatorname{node_to_grad}[i])
 for k \in inputs(i):
 compute \overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}
 append \overline{v_{k \to i}} to node_to_grad[k]
 return adjoint of input \overline{v_{input}}
 }
}$$



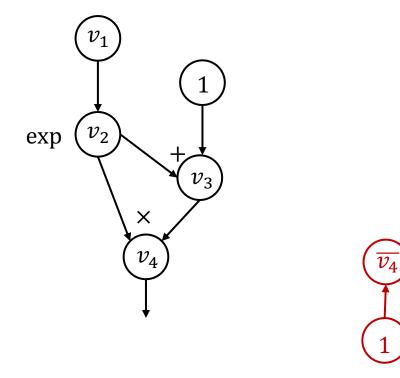
Our previous examples compute adjoint values directly by hand. How can we construct a computational graph that calculates the adjoint values?

def gradient(out):
node_to_grad = {out: [1]}
for *i* in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$$

for $k \in inputs(i)$:
compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$
append $\overline{v_{k \to i}}$ to node_to_grad[k]
return adjoint of input $\overline{v_{input}}$

i = 4	
<pre>node_to_grad: {</pre>	
4: $[\overline{v_4}]$	(
}	
5	

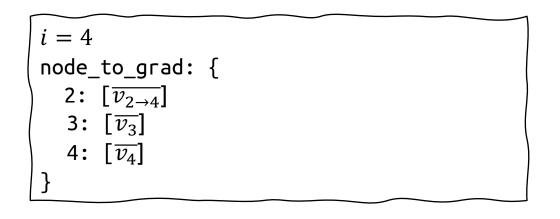


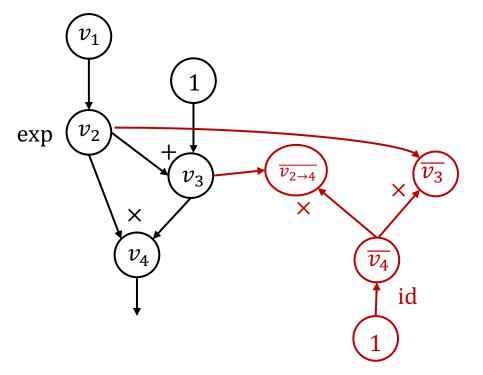
id

def gradient(out):
node_to_grad = {out: [1]}
for *i* in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$$

for $k \in inputs(i)$:
compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$
append $\overline{v_{k \to i}}$ to node_to_grad[k]
return adjoint of input $\overline{v_{input}}$

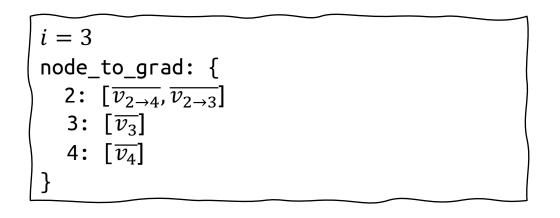


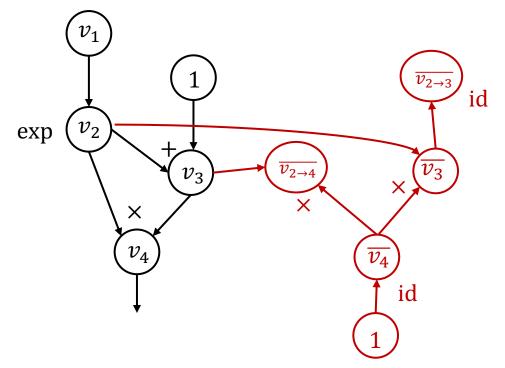


def gradient(out):
node_to_grad = {out: [1]}
for *i* in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$$

for $k \in inputs(i)$:
compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$
append $\overline{v_{k \to i}}$ to node_to_grad[k]
return adjoint of input $\overline{v_{input}}$



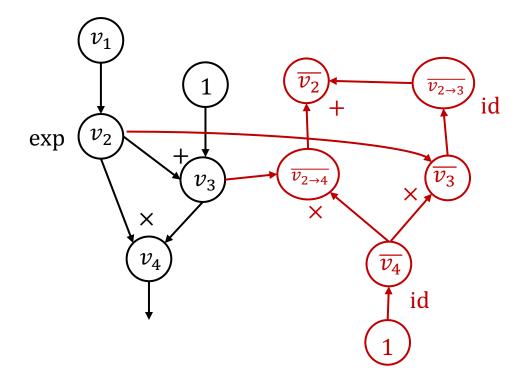


def gradient(out):
 node_to_grad = {out: [1]}
 for i in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \operatorname{sum}(\operatorname{node_to_grad}[i])$$

 for $k \in inputs(i)$:
 compute $\overline{v_{k \to i}} = \overline{v_i} \ \frac{\partial v_i}{\partial v_k}$
 append $\overline{v_{k \to i}}$ to node_to_grad[k]
 return adjoint of input $\overline{v_{input}}$

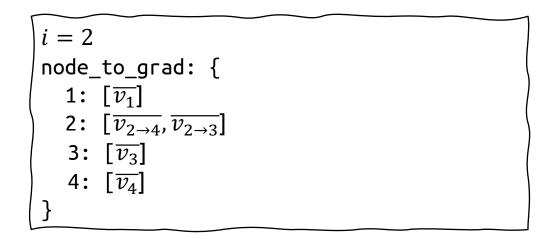
i = 2	
<pre>node_to_grad: {</pre>	
2: $[\overline{v_{2\rightarrow 4}}, \overline{v_{2\rightarrow 3}}]$	
3: $[\overline{v_3}]$	
4: $[\overline{v_4}]$	
}	

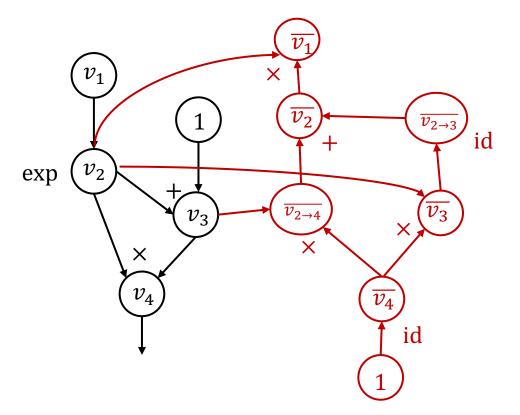


def gradient(out):
node_to_grad = {out: [1]}
for *i* in reverse_topo_order(out):

$$\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$$

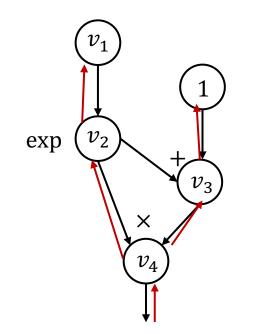
for $k \in inputs(i)$:
compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$
append $\overline{v_{k \to i}}$ to node_to_grad[k]
return adjoint of input $\overline{v_{input}}$



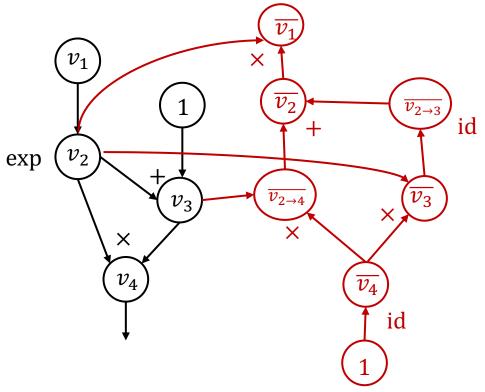


Reverse Mode AD vs Backprop

Backprop

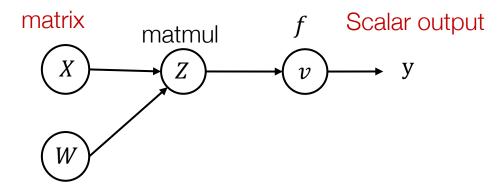


- Run backward operations the same forward graph
- Used in first generation deep learning frameworks (caffe, cuda-convnet)



- Construct separate graph nodes for adjoints
- Used by modern deep learning frameworks

Reverse mode AD on Tensors



Forward evaluation trace

$$Z_{ij} = \sum_{k} X_{ik} W_{kj}$$
$$v = f(Z)$$

Forward matrix form

Z = XWv = f(Z)

Define adjoint for tensor values
$$\bar{Z} = \begin{bmatrix} \frac{\partial y}{\partial Z_{1,1}} & \dots & \frac{\partial y}{\partial Z_{1,n}} \\ \dots & \dots & \dots \\ \frac{\partial y}{\partial Z_{m,1}} & \dots & \frac{\partial y}{\partial Z_{m,n}} \end{bmatrix}$$

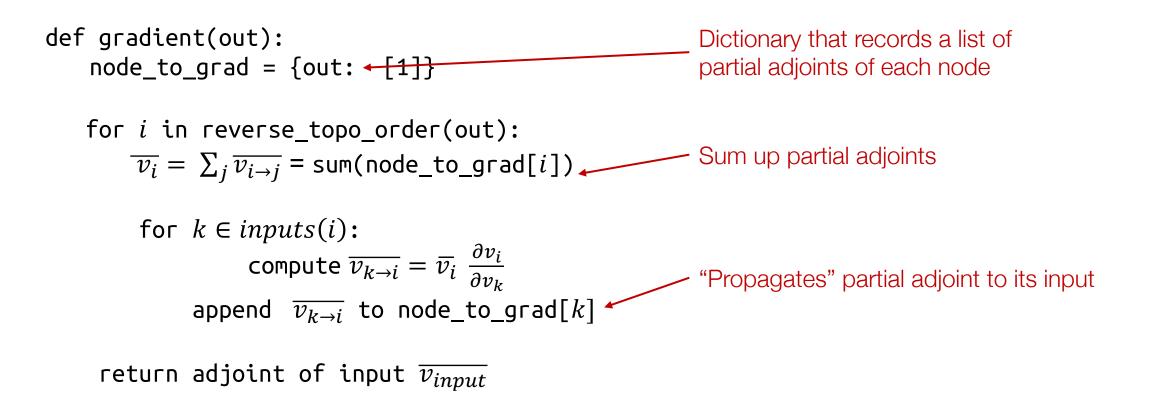
Reverse evaluation in scalar form

$$\overline{X_{i,k}} = \sum_{j} \frac{\partial Z_{i,j}}{\partial X_{i,k}} \overline{Z}_{i,j} = \sum_{j} W_{k,j} \overline{Z}_{i,j}$$

Reverse matrix form

 $\bar{X} = \bar{Z}W^T$

Reverse AD Algorithm

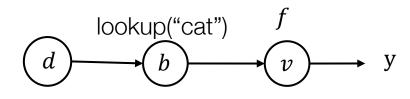


What are the pros/cons of backprop and reverse mode AD

Handling Gradient of Gradient

- The result of reverse mode AD is still a computational graph
- We can extend that graph further by composing more operations and run reverse mode AD again on the gradient
- Part of homework 1

Reverse Mode AD on Data Structures



Define adjoint data structure

$$\bar{d} = \{\text{``cat''}: \frac{\partial y}{\partial a_0}, \text{ ``dog''}: \frac{\partial y}{\partial 1}\}$$

Forward evaluation trace

Reverse evaluation

$$\begin{array}{ll} d = \{\text{``cat'': } a_0, \text{ ``dog'': } a_1\} & \overline{b} = \frac{\partial v}{\partial b} \, \overline{v} \\ b = d \, [\text{``cat'']} & \overline{d} = \{\text{``cat'': } \overline{b} \ \} \\ v = f(b) & \end{array}$$

- Key take away: Define "adjoint value" usually in the same data type as the forward value and adjoint propagation rule. Then the sample algorithm works.
- Do not need to support the general form in our framework, but we may support "tuple values"