
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Automatic Differentiation

Spring 2024

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

1
3/1/24

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Elements of Machine Learning

• Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given
set of parameters

• Training (optimization) method
A procedure to find a set of
parameters that minimizes the loss

4

Logistic regression model

Regularized loss function

Stochastic gradient descentComputing the loss function gradient with respect
to hypothesis class parameters is the most
common operation in machine learning

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Numerical Differentiation

Directly compute the partial gradient by definition

A more numerically accurate way to approximate the gradient

Suffer from numerical error, less efficient to compute

5

𝜕𝑓 𝜃
𝜕𝜃!

= lim
"→$

𝑓 𝜃 + 𝜖𝑒! − 𝑓(𝜃)	
𝜖

𝜕𝑓 𝜃
𝜕𝜃!

=
𝑓 𝜃 + 𝜖𝑒! − 𝑓(𝜃 − 𝜖𝑒!)	

2𝜖 + 𝑜(𝜖%)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement
of an automatic differentiation algorithm in unit test cases

Pick 𝛿 from unit ball, check the above invariance.

6

𝛿1∇2𝑓 𝜃 	=
𝑓 𝜃 + 𝜖𝛿 − 𝑓(𝜃 − 𝜖𝛿)	

2𝜖
+ 𝑜 𝜖3 	

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

Naively do so can result in wasted computations

Example:

Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients

7

&(() *+))
&)

= &()
&)

+ &+)
&)

&(() +))
&)

= g(𝜃) &()
&)

+ f(𝜃) &+)
&)

&((+))
&)

= &((+))
&+())

&+)
&)

𝑓 𝜃 =6
!-.

/

𝜃!
𝑓 𝜃
𝜕𝜃0

=6
120

/

𝜃1

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Computational Graph

8

y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

Forward evaluation trace

𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Forward Mode Automatic Differentiation (AD)

9

Define ̇𝑣! =
&8!
&9"

Forward evaluation trace
𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

̇𝑣. = 1
̇𝑣% = 0
̇𝑣3 = ̇𝑣./𝑣. = 0.5
̇𝑣4 = ̇𝑣.𝑣% + ̇𝑣%𝑣. = 1×5 + 0×2 = 5
̇𝑣6 = ̇𝑣%cos 𝑣% = 0×cos 5 = 0	
̇𝑣5 = ̇𝑣3 + ̇𝑣4 =0.5 + 5 = 5.5
̇𝑣7 = ̇𝑣5 − ̇𝑣6 =5.5 − 0 = 5.5

Forward AD trace

&:
&9"

= ̇𝑣7 = 5.5

We can then compute the ̇𝑣! iteratively in the forward
topological order of the computational graph

Now we have

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Forward Mode AD

• For 𝑓:ℝ! → ℝ", we need 𝑛 forward AD passes to get the
gradient with respect to each input.

• We mostly care about the cases where 𝑘 = 1 and large 𝑛	.

• In order to resolve the problem efficiently, we need to use
another kind of AD.

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse Mode Automatic Differentiation(AD)

12

Define adjoint J𝑣! =
&:
&8!

Forward evaluation trace
𝑣. = 𝑥. = 2
𝑣% = 𝑥% = 5
𝑣3 = ln 𝑣. = ln 2 = 0.693	
𝑣4 = 𝑣.×	𝑣% = 10
𝑣6 = sin 𝑣% = sin 5 = −0.959
𝑣5 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣5 − 𝑣6 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥., 𝑥% = ln 𝑥. + 𝑥.𝑥% − sin 𝑥%

𝑥.

𝑥%

×

ln +

−

sin

y

𝑣.

𝑣%

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

We can then compute the J𝑣! 	iteratively in the reverse
topological order of the computational graph

Reverse AD evaluation trace

𝑣! =
𝜕𝑦
𝜕𝑣!

= 1

𝑣" = 𝑣!
𝜕𝑣!
𝜕𝑣"

= 𝑣!×1 = 1

𝑣# = 𝑣!
𝜕𝑣!
𝜕𝑣#

= 𝑣!× −1 = −1

𝑣$ = 𝑣"
𝜕𝑣"
𝜕𝑣$

= 𝑣"×1 = 1

𝑣% = 𝑣"
𝜕𝑣"
𝜕𝑣%

= 𝑣"×1 = 1

𝑣& = 𝑣#
𝜕𝑣#
𝜕𝑣&

+ 𝑣$
𝜕𝑣$
𝜕𝑣&

= 𝑣#×cos 𝑣& + 𝑣$×𝑣' = −0.284 + 2 = 1.716

𝑣' = 𝑣$
𝜕𝑣$
𝜕𝑣'

+ 𝑣%
𝜕𝑣%
𝜕𝑣'

= 𝑣$ ×𝑣& + 𝑣%
1
𝑣'
= 5 +

1
2
= 5.5

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Derivation for the Multiple Pathway Case

13

y𝑣. 𝑣%

𝑣3

𝑣4

𝑣. is being used in multiple pathways (𝑣% and 𝑣3)

𝑣. = &:
&8"

 = &((8#,8$)
&8#

&8#
&8"

+ &((8#,8$)
&8$

&8$
&8"

= 𝑣%
&8#
&8"

 + 𝑣3
&8$
&8"

y can be written in the form of y = f(v%, v3)

Define partial adjoint 𝑣!→1 =	 J𝑣1
𝜕𝑣1
𝜕𝑣!

for each input output node pair 𝑖	and 𝑗

J𝑣! =	 N
1∈/=9>(!)

𝑣!→1

We can compute partial adjoints separately then sum them together

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse AD Algorithm

14

def gradient(out):
 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):
 	𝑣! =	∑" 𝑣!→" = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣$→! = /𝑣!

%&!
%&"

 append 𝑣$→! to node_to_grad[𝑘]

 return adjoint of input 𝑣!'()*

Dictionary that records a list of
partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse Mode AD by Extending Computational Graph

15

𝑣.

𝑣%

𝑣3

𝑣4

exp

×

+

1

Our previous examples compute adjoint values directly by hand.
How can we construct a computational graph that calculates the adjoint values?

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse mode AD by extending computational graph

16

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

×

+

1

1
𝑖 = 4
node_to_grad: {
 4: [𝑣4]
}

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

17

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣&→$ 𝑣3
× ×

×
+

1

1
𝑖 = 4
node_to_grad: {
 2: [𝑣%→4]
 3: [𝑣3]
 4: [𝑣4]
}

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

18

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣&→$ 𝑣3

𝑣&→%
id

× ×
×

+

1

1

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

𝑖 = 3
node_to_grad: {
 2: [𝑣%→4, 𝑣%→3]
 3: [𝑣3]
 4: [𝑣4]
}

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

19

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

× ×
×

+

+
1

1

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

𝑖 = 2
node_to_grad: {
 2: [𝑣%→4, 𝑣%→3]
 3: [𝑣3]
 4: [𝑣4]
}

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

𝑖 = 2
node_to_grad: {
 1: [𝑣.]
 2: [𝑣%→4, 𝑣%→3]
 3: [𝑣3]
 4: [𝑣4]
} 20

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

𝑣.

× ×
×

×

+

+
1

1

def gradient(out):
 node_to_grad = {out: [1]}
 for 𝑖 in reverse_topo_order(out):
	 J𝑣! =	∑1 𝑣!→1 = sum(node_to_grad[𝑖])
 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣0→! = J𝑣!

&8!
&8"

 append 𝑣0→! to node_to_grad[𝑘]
 return adjoint of input 𝑣!/?@>

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

21

𝑣.

𝑣%

𝑣3

𝑣4

exp

×

+

1

Backprop Reverse mode AD by
extending computational graph

• Run backward operations the same forward graph
• Used in first generation deep learning

frameworks (caffe, cuda-convnet)

• Construct separate graph nodes for adjoints
• Used by modern deep learning frameworks

𝑣.

𝑣%

𝑣3

𝑣4 𝑣4

exp

id

𝑣&→$ 𝑣3

𝑣&→%
id

𝑣%

𝑣.

× ×
×

×

+

+
1

1

Reverse Mode AD vs Backprop

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

22

y𝑋 𝑣

𝑊

Define adjoint for tensor values �̅� =

&:
&A#,#

… &:
&A#,%… … …

&:
&A&,#

… &:
&A&,%

Scalar outputmatrix

𝑍
matmul

Forward evaluation trace Reverse evaluation in scalar form

𝑋!,0 =N
1

𝜕𝑍!,1
𝜕𝑋!,0

�̅�!,1 =N
1

𝑊0,1�̅�!,1

𝑓

𝑍!1 =N
0

𝑋!0𝑊01

𝑣 = 𝑓(𝑍)

Forward matrix form

𝑍 = 𝑋𝑊
𝑣 = 𝑓(𝑍)

b𝑋 = �̅�𝑊B

Reverse matrix form

Reverse mode AD on Tensors

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse AD Algorithm

23

def gradient(out):
 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):
 	𝑣! =	∑" 𝑣!→" = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :
 compute 𝑣$→! = /𝑣!

%&!
%&"

 append 𝑣$→! to node_to_grad[𝑘]

 return adjoint of input 𝑣!'()*

Dictionary that records a list of
partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussions

What are the pros/cons of backprop and reverse mode AD

24

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Handling Gradient of Gradient

• The result of reverse mode AD is still a computational graph

• We can extend that graph further by composing more operations and run
reverse mode AD again on the gradient

• Part of homework 1

25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

26

y𝑑 𝑣 Define adjoint data structure

�̅� ={“cat”: &:
&C'

, “dog”:
&:
&.
}

𝑏
lookup(“cat”)

Reverse evaluation

𝑓

𝑑 = {“cat”: 𝑎+, “dog”:	𝑎,}
𝑏 = 𝑑 [“cat”]
𝑣 = 𝑓(𝑏)

Forward evaluation trace

8𝑏 = %&
%-

 �̅�
�̅� = {“cat”: 8𝑏 }

• Key take away: Define “adjoint value” usually in the same data type as the forward value and
adjoint propagation rule. Then the sample algorithm works.

• Do not need to support the general form in our framework, but we may support “tuple values”

Reverse Mode AD on Data Structures

