
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Introduction to
Machine Learning Systems

Spring 2025

Tianqi Chen

Carnegie Mellon University

1
1/22/2025

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Machine learning Systems

3

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization

ML Systems

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Layer 1: Automatic Differentiation

4

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization

Automatically construct
backward computation graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Layer 2: Graph-Level Optimizations

5

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: DNNs as Computation Graphs

• Collection of simple trainable mathematical units that work together to
solve complicated tasks

6

A tensor algebra operator

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph-Level Optimizations

7

conv3x3 conv1x1

Input

conv3x3

add

relu

…

Potential graph

transformations

conv3x3 conv1x1

Input

conv3x3

add

relu

batchnorm batchnorm

Input Computation

Graph

Optimized Computation

Graph

Fuse conv + batchnorm

conv

batchnorm

conv

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Fusing Convolution and Batch Normalization

8

Conv2D

X W

BatchNorm

Y

Z

R P

𝒁 𝒏, 𝒄, 𝒉,𝒘 = 𝒀 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉,𝒘 =

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉,𝒘)

B

W, B, R, P are constant pre-trained weights

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Conv and BatchNorm

9

Conv2D

X W

BatchNorm

Y

Z

R P

B

Conv2D

X W2

Z

B2

𝑾𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑾 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄

𝑩𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑩 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉,𝒘 =

𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐 (𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐 (𝒏, 𝒄, 𝒉,𝒘)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

10

Fuse conv + relu

Fuse conv +

batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently

includes ~200 rules

(~53,000 LOC)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer),
the training speed is about 20% slower

With XLA, my program is almost 2x slower than
without XLA

Robustness
Experts’ heuristics do not

apply to all models/hardware

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all models/hardware

Scalability
New operators and graph

structures require more rules

TensorFlow currently uses ~4K

LOC to optimize convolution

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not

apply to all models/hardware

Scalability
New operators and graph

structures require more rules

Performance
Miss subtle optimizations for

specific models/hardware

13

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Motivating Example (ResNet*)

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

14

𝒀 𝒏, 𝒄, 𝒉,𝒘 =

𝒅

𝑫

𝒖=𝟏

𝟏

𝒗=𝟏

𝟏

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

𝒀 𝒏, 𝒄, 𝒉,𝒘 =

𝒅

𝑫

𝒖=𝟏

𝟑

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

15

𝒀 𝒏, 𝒄, 𝒉,𝒘 =

𝒅

𝒖=𝟏

𝟑

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse

convs

16

𝒀 𝒏, 𝒄, 𝒉,𝒘 =

𝒅

𝑫

𝒖=𝟏

𝟑

𝒗=𝟏

𝟑

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾′(𝒄, 𝒅, 𝒖, 𝒗)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)

Conv3x3

+ Relu
Conv1x1

+ Relu

Input

Conv3x3

Add

Relu

Conv3x3

+ Relu
Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Enlarge

convs

Conv3x3

+ Relu

Input

Conv3x3

Add

Relu

Split

Fuse

convs
Fuse

conv & add

The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.

Conv3x3

+ Relu

Input

Conv3x3

+ Relu

Fuse

conv & relu

Conv3x3

+ Relu

Input

Conv3x3

Relu

17

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

18

Graph Optimizations

ML

Operators

Graph

Architectures

Hardware

Backends

Infeasible to manually design graph optimizations

for all cases

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Graph Optimizations

19

Mathematical

Properties of ML

Graph

Optimization

Generator

Graph

Optimization

Verifier

Candidate

Optimizations
Verified

Optimizations

Graph

Optimizer
… …

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Layer 3: Parallelizing ML Computations

20

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

21

Forward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

22

Backward propagation

Model inputs Model prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for
each trainable weight

3. Weight update: use the loss value to update model weights

23

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How can we parallelize ML training?

24

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

25

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of

each batch on a GPU

Gradients

Aggregation

3. Aggregate gradients

across GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

30

GPU 2

ML Model

Training Dataset

Model

Parallelism

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Transfer

intermediate

results

between

devices

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

32

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Kernel Generation: How to find performant programs for
each operator?

33

conv3x3 Matmul

Input

conv3x3

add

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs

• cudnnConvolutionForward() for convolution

• cublasSgemm() for matrix multiplication

Issues:

• Cannot provide immediate support for new operators

• Increasing complexity of hardware -> hand-written kernels are suboptimal

34

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Automated Code Generation

35

conv3x3 Matmul

Input

conv3x3

add

Automated search for performant

programs:

✓ Immediate support for new operators

✓ Better performance than hand-written

kernels

* Slides from Tianqi Chen

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Overview of Deep Learning Systems

36

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

37

Forward pass

Backward pass

Need to keep all intermediate results alive

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Upcoming Lectures

44

ML Model

N
e

tw
o

rk

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

4 Automatic Differentiation

5 Optimizing Linear Algebra

6 GPU Programming (1)

7 GPU Programming (2)

8 ML Compilation (1)

9 ML Compilation (2)

10 Graph-level Optimization

11 Memory Optimizations

12 ML Parallelization (1)

13 ML Parallelization (2)

	Slide 1: 15-442/15-642: Machine Learning Systems Introduction to Machine Learning Systems
	Slide 3: An Overview of Machine learning Systems
	Slide 4: Layer 1: Automatic Differentiation
	Slide 5: Layer 2: Graph-Level Optimizations
	Slide 6: Recap: DNNs as Computation Graphs
	Slide 7: Graph-Level Optimizations
	Slide 8: Example: Fusing Convolution and Batch Normalization
	Slide 9: Fusing Conv and BatchNorm
	Slide 10: Current Rule-based Graph Optimizations
	Slide 11: Limitations of Rule-based Optimizations
	Slide 12: Limitations of Rule-based Optimizations
	Slide 13: Limitations of Rule-based Optimizations
	Slide 14: Motivating Example (ResNet*)
	Slide 15: Motivating Example (ResNet*)
	Slide 16
	Slide 17: Motivating Example (ResNet*)
	Slide 18
	Slide 19: Automated Graph Optimizations
	Slide 20: Layer 3: Parallelizing ML Computations
	Slide 21: Recap: Stochastic Gradient Descent (SGD)
	Slide 22: Recap: Stochastic Gradient Descent (SGD)
	Slide 23: Recap: Stochastic Gradient Descent (SGD)
	Slide 24: How can we parallelize ML training?
	Slide 25: Data Parallelism
	Slide 30: Model Parallelism
	Slide 32: An Overview of Deep Learning Systems
	Slide 33: Kernel Generation: How to find performant programs for each operator?
	Slide 34: Existing Approach: Engineer Optimized Tensor Programs
	Slide 35: Automated Code Generation
	Slide 36: An Overview of Deep Learning Systems
	Slide 37: GPU Memory is the Bottleneck in DNN Training
	Slide 44: Upcoming Lectures

