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An Overview of Machine learning Systems
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Layer 1: Automatic Differentiation
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Layer 2: Graph-Level Optimizations

5

ML Model

N
etw

ork

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

CPU

GPU GPU GPU

HB
M

DR
AM

DR
AM

HB
M HB
M

Automatic Differentiation 

Graph-Level Optimization

Parallelization

Kernel Generation

Memory Optimization



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: DNNs as Computation Graphs

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks
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A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Convolution and Batch Normalization
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𝒁 𝒏, 𝒄, 𝒉,𝒘 = 𝒀 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷 𝒄

𝒀 𝒏, 𝒄, 𝒉,𝒘 = -
𝒅,𝒖,𝒗

𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩(𝒏, 𝒄, 𝒉,𝒘)

B

W, B, R, P are constant pre-trained weights
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Fusing Conv and BatchNorm
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𝑩𝟐 𝒏, 𝒄, 𝒉,𝒘 = 𝑩 𝒏, 𝒄, 𝒉,𝒘 ∗ 𝑹 𝒄 + 𝑷(𝒄)

𝒁 𝒏, 𝒄, 𝒉,𝒘 = -
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𝑿 𝒏, 𝒅, 𝒉 + 𝒖,𝒘 + 𝒗 ∗𝑾𝟐	(𝒄, 𝒅, 𝒖, 𝒗) + 𝑩𝟐	(𝒏, 𝒄, 𝒉,𝒘)
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Fuse conv + relu

Fuse conv + 
batch normalization

Fuse multi. convs

…

Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 
includes ~200 rules 

(~53,000 LOC)
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Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), 
the training speed is about 20% slower

With XLA, my program is almost 2x slower than 
without XLA

Robustness
Experts’ heuristics do not 

apply to all models/hardware  
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability 
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 
LOC to optimize convolution
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability 
New operators and graph 

structures require more rules

Performance 
Miss subtle optimizations for 

specific models/hardware
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Motivating Example (ResNet*)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)
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Graph Optimizations

ML 
Operators

Graph
Architectures

Hardware 
Backends

Infeasible to manually design graph optimizations 
for all cases 
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Automated Graph Optimizations
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Layer 3: Parallelizing ML Computations
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

21

Forward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 
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Backward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 
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How can we parallelize ML training?
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Data Parallelism 
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GPU 1
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1. Partition training data into batches 2. Compute the gradients of 
each batch on a GPU 

Gradients 
Aggregation

3. Aggregate gradients 
across GPUs
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices
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GPU 2
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An Overview of Deep Learning Systems
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Kernel Generation: How to find performant programs for 
each operator?
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Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by 
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
• cudnnConvolutionForward() for convolution
• cublasSgemm() for matrix multiplication

Issues: 
• Cannot provide immediate support for new operators
• Increasing complexity of hardware -> hand-written kernels are suboptimal
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Automated Code Generation
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Automated search for performant 
programs:
ü Immediate support for new operators
ü Better performance than hand-written 

kernels

* Slides from Tianqi Chen
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An Overview of Deep Learning Systems
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GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory
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Forward pass

Backward pass

Need to keep all intermediate results alive
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Upcoming Lectures
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4 Automatic Differentiation
5 Optimizing Linear Algebra
6 GPU Programming (1)
7 GPU Programming (2)
8 ML Compilation (1)
9 ML Compilation (2)
10 Graph-level Optimization
11 Memory Optimizations
12 ML Parallelization (1)
13 ML Parallelization (2)


