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An Overview of Machine learning Systems
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Layer 1: Automatic Differentiation
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Layer 2: Graph-Level Optimizations
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Recap: DNNs as Computation Graphs

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks
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A tensor algebra operator 

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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Graph-Level Optimizations
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Example: Fusing Convolution and Batch Normalization
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W, B, R, P are constant pre-trained weights



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Fusing Conv and BatchNorm
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Fuse conv + relu

Fuse conv + 
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Current Rule-based Graph Optimizations

Rule-based Optimizer

TensorFlow currently 

includes ~200 rules 

(~53,000 LOC)
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Limitations of Rule-based Optimizations

When I turned on XLA (TensorFlow’s graph optimizer), 
the training speed is about 20% slower

With XLA, my program is almost 2x slower than 
without XLA

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

11
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability 
New operators and graph 

structures require more rules

TensorFlow currently uses ~4K 

LOC to optimize convolution
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Limitations of Rule-based Optimizations

Robustness
Experts’ heuristics do not 

apply to all models/hardware  

Scalability 
New operators and graph 

structures require more rules

Performance 
Miss subtle optimizations for 

specific models/hardware
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Motivating Example (ResNet*)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)
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* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

(Decrease performance)

Motivating Example (ResNet*)
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Automated Graph Optimizations
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Layer 3: Parallelizing ML Computations
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 

21

Forward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 
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Backward propagation

Model inputs Model prediction
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Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and run 
calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error for 
each trainable weight

3. Weight update: use the loss value to update model weights 
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How can we parallelize ML training?
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Data Parallelism 
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices
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An Overview of Deep Learning Systems
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Kernel Generation: How to find performant programs for 
each operator?
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Existing Approach: Engineer Optimized Tensor Programs

• Hardware vendors provide operator libraries manually developed by 
software/hardware engineers

• cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs

• cudnnConvolutionForward() for convolution

• cublasSgemm() for matrix multiplication

Issues: 

• Cannot provide immediate support for new operators

• Increasing complexity of hardware -> hand-written kernels are suboptimal

34
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Automated Code Generation
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Automated search for performant 
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✓ Immediate support for new operators

✓ Better performance than hand-written 

kernels

* Slides from Tianqi Chen
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An Overview of Deep Learning Systems
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GPU Memory is the Bottleneck in DNN Training

• The biggest model we can train is bounded by GPU memory

• Larger models often achieve better predictive performance

• Extremely critical for modern accelerators with limited on-chip memory

37

Forward pass

Backward pass

Need to keep all intermediate results alive
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Upcoming Lectures
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4 Automatic Differentiation

5 Optimizing Linear Algebra

6 GPU Programming (1)

7 GPU Programming (2)

8 ML Compilation (1)

9 ML Compilation (2)

10 Graph-level Optimization

11 Memory Optimizations

12 ML Parallelization (1)

13 ML Parallelization (2)
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