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Overview of deep learning

Programming abstractions for deep learning
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Elements of Machine Learning

• Model(hypothesis) class 
A parameterized function that describes 
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given 
set of parameters

• Training (optimization) method

A procedure to find a set of 
parameters that minimizes the loss
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Logistic regression model

Regularized loss function

Stochastic gradient descent
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• Compositional multi-layer model

• End to end training: learning parameters of all layers together

• NOTE: the other ingredients (loss and training) remains the same as other machine 
learning methods

Deep Learning, Key Ideas

Layer 1 Layer 2 Prediction



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CNNs are widely used in vision tasks
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Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Convolution

• Convolve the filter with the image: slide over the image spatially and 
compute dot products
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CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

9[Zeiler and Fergus 2013]
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks: vision tasks

• Recurrent Neural Networks

• Transformer

• Graph Neural Networks

• Mixture-of-Experts
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Recurrent Neural Networks: Process Sequences
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Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences
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e.g., image captioning

Image -> sequence of words
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Recurrent Neural Networks: Process Sequences
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e.g., action prediction

sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences
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Video captioning: sequence of 

video frames -> sequence of words

Machine translation

Video classification 

on frames
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Recurrent Neural Networks
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outputs[i]

Recurrent 

Neural 

Networks

inputs[i]

Key idea: RNNs have an 

internal state that is 

updated as a sequence 

is processed

Arbitrary number of outputs

Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

• Computation graphs must be direct acyclic graphs (DAGs) but RNNs have 
self loops

• Solution: unrolling RNNs (define maximum depth)
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When do we need RNNs?

• RNNs are designed to process sequences (texts, videos)

• RNNs are extremely useful when you want your model to have internal 
states when a sequence is processed

• Commonly used in reinforcement learning (RL)

17
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts
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Inefficiency in RNNs?

• Problem: lack of parallelizability. Both forward and backward passes have 
O(sequence length) unparallelizable operators

• A state cannot be computed before all previous states have been 
computed

• Inhibits training on very long sequences

19

output0

RNN

input0

state0

output1

RNN

input1

state1

output2

RNN

input3

state2

outputn

RNN

inputn

staten



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

20

Layer 0

Attention Layer 1

Attention Layer 2
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Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

• Massively parallelizable: number of unparallelizable operations does not 
increase sequence length

21

Layer 0

Attention Layer 1

Attention Layer 2

We will learn attention and 

transformers in depth later:

• Self-attention

• Masked attention

• Multi-head attention

values

query
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GNNs: Neural Networks on Relational Data

23

Neural Networks Graph Neural Networks
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A

DNN Operations

Aggregation
(sum, LSTM, …)

Neighbor Aggregation

Graph Neural Network Architecture

• Combine graph propagation w/ neural network operations

24

B
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DC

Target vertex
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Input

Representations
New

Representations



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications: 
An Overview of Deep Learning Models

25

• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts
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Mixture-of-Experts

• Key idea: make each expert focus on predicting the right answer for a 
subset of cases
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Switch Transformers = Transformers + Mixture of Experts
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Outline

Overview of deep learning

Programming abstractions for deep learning

28



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data
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Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)

Execution planner

Storage engine

Data Processing

Distributed Primitive(MapReduce)

Fault tolerance layer

Workload migration 
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Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data

Discussion how can these 
ingredients affect the system 
design of ML frameworks 
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Computational Graph Abstraction

• Nodes represents the computation (operation)

• Edge represents the data dependency between operations

32

a

b

mul add-const

3

Computational Graph for   a * b +3 
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Case Study of Computational

• In the next few slides, we will do a case study of a deep learning program 
using TensorFlow v1 style API.

• Note that the most deep learning frameworks now use a different style, but 
share the same mechanism under the hood

• Think about abstraction and implementation when going through these 
examples

33
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Logistic Regression

Input One Linear Layer Softmax
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Forward Computation 
Declaration

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Loss function Declaration

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Automatic Differentiation: 
Next incoming topic

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

SGD update rule

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Real execution happens 
here!

Logistic Regression in TF1-style API
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Computational Graph Construction by Step

40

W

x

matmult softmax

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

y
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W

x

matmult softmax log

y_

mul mean
y cross_entropy

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Computational Graph Construction by Step
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W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

y cross_entropy

W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in 
follow up lectures 

Computational Graph Construction by Step
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W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign
y cross_entropy

Computational Graph Construction by Step

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
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W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign
y cross_entropy

• What are the benefits of computational graph abstraction?

• What are possible implementation and optimizations on top of this 
abstraction

Computational Graph Construction by Step
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Imperative Computational Graph Construction

• TF1 style API uses a define then run approach

• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

45

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

x

y

sub

[3]

[2]

[1]



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Imperative Computational Graph Construction

• TF1 style API uses a define then run approach

• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

46

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

loss = square(z)

loss.backward()

print(x.grad)

x

y

sub

[3]

[2]
square

[1] [1]

square-grad

[2]

mul

x.grad

[2]

loss

y.grad’s path is omitted
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• Both leverages computational graph abstraction under the hood

• Define and run gives more flexibility to programmer

 

• Define then run still brings some benefits
• See the entire computational graph to do global optimization

• Active topic of research, hybrid approaches such as JIT compilation

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

print(z)

TF1 vs PyTorch Style API
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