

15-442/15-642: Machine Learning Systems

Deep Learning and Programming Abstraction

Spring 2026

Tianqi Chen and Zhihao Jia
Carnegie Mellon University

Outline

Overview of deep learning

Programming abstractions for deep learning

Outline

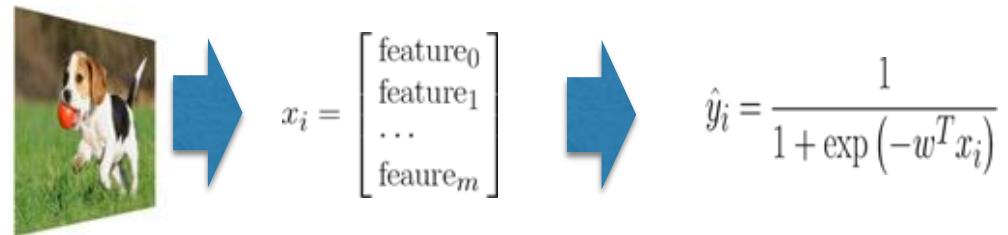
Overview of deep learning

Programming abstractions for deep learning

Elements of Machine Learning

- **Model(hypothesis) class**

A parameterized function that describes how do we map inputs to predictions



- **Loss function**

How “well” are we doing for a given set of parameters

- **Training (optimization) method**

A procedure to find a set of parameters that minimizes the loss

Logistic regression model

$$L(w) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \lambda \|w\|^2$$

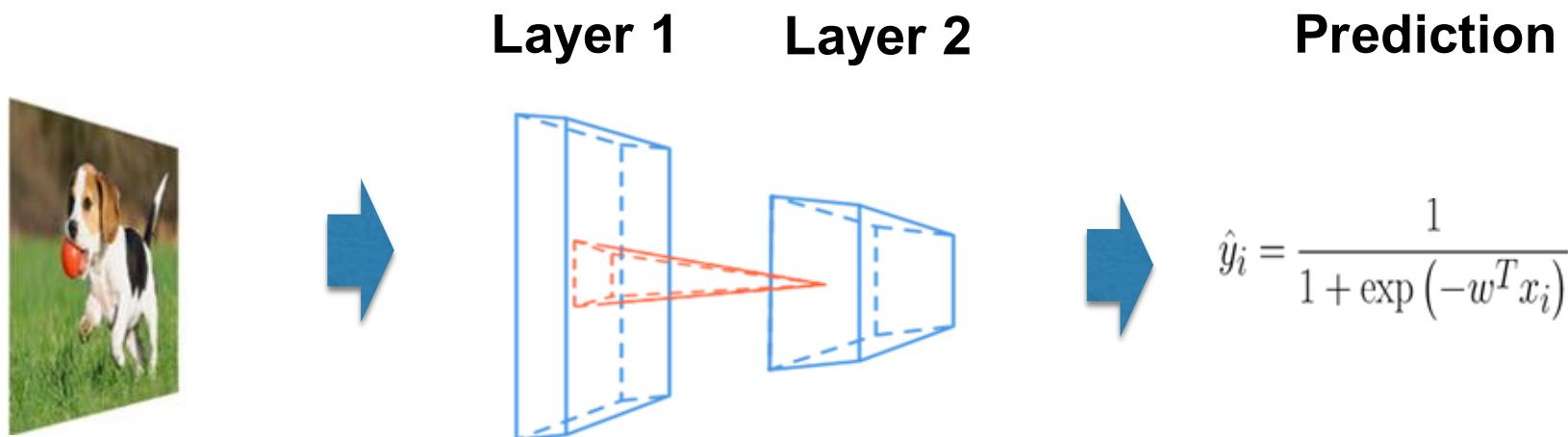
Regularized loss function

$$w \leftarrow w - \eta \nabla_w L(w)$$

Stochastic gradient descent

Deep Learning, Key Ideas

- Compositional multi-layer model



- End to end training: learning parameters of all layers together
- NOTE: the other ingredients (loss and training) remains the same as other machine learning methods

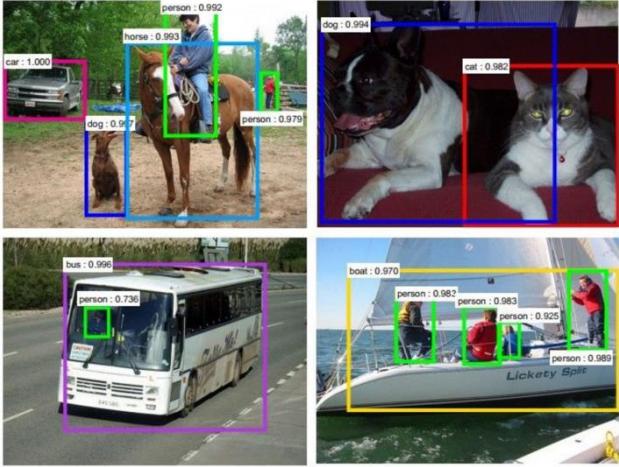
Understand Our Applications: An Overview of Deep Learning Models

- **Convolutional Neural Networks**
- **Recurrent Neural Networks**
- **Transformers**
- **Graph Neural Networks**
- **Mixture-of-Experts**

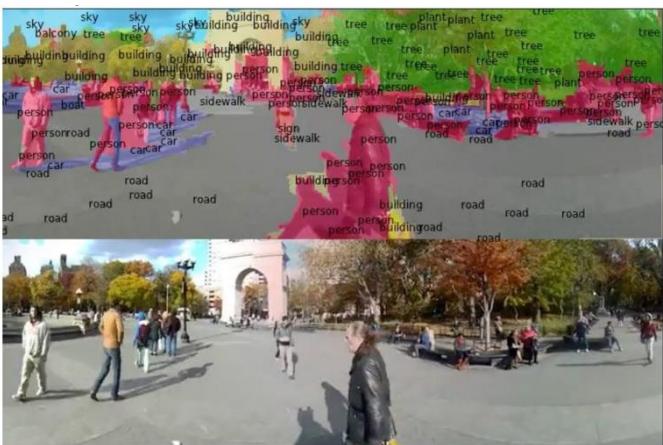
CNNs are widely used in vision tasks

Classification

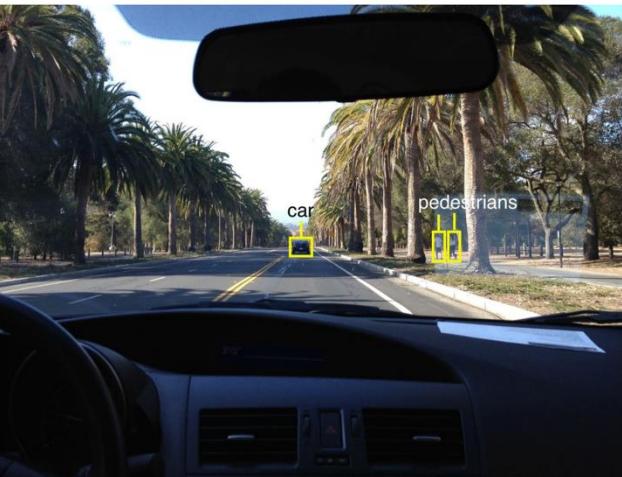
Retrieval



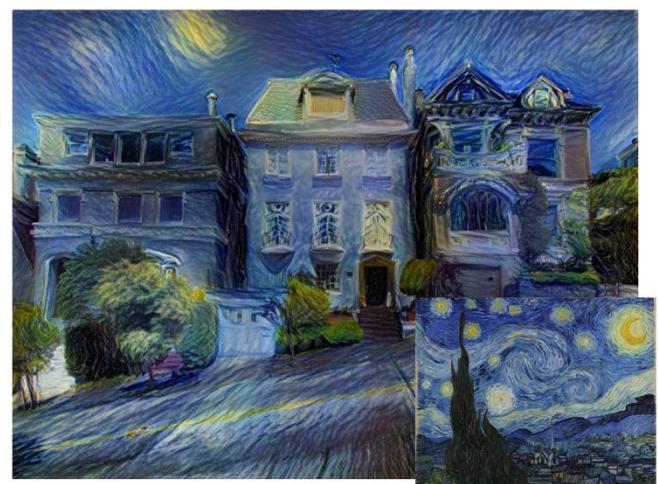
Detection



Segmentation



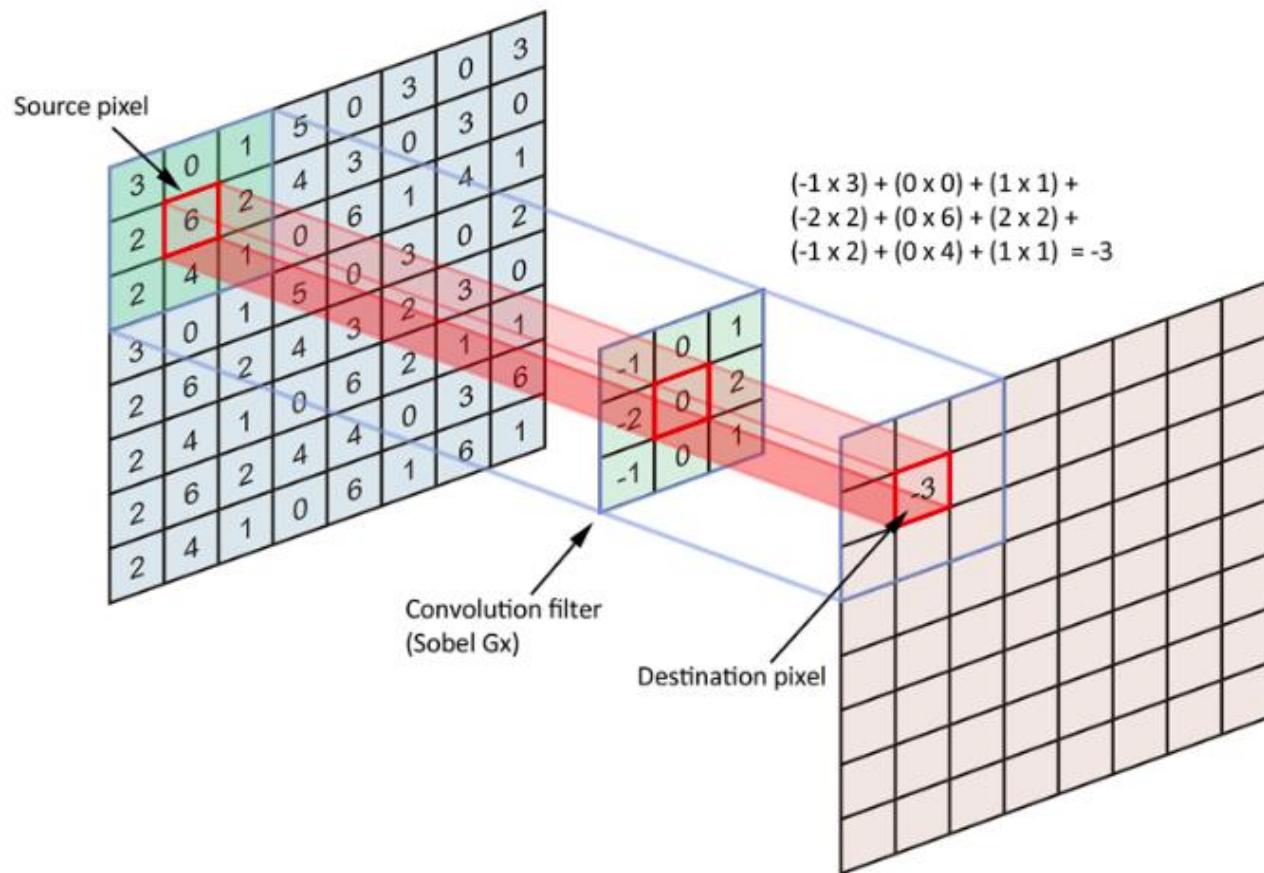
Self-Driving



Synthesis

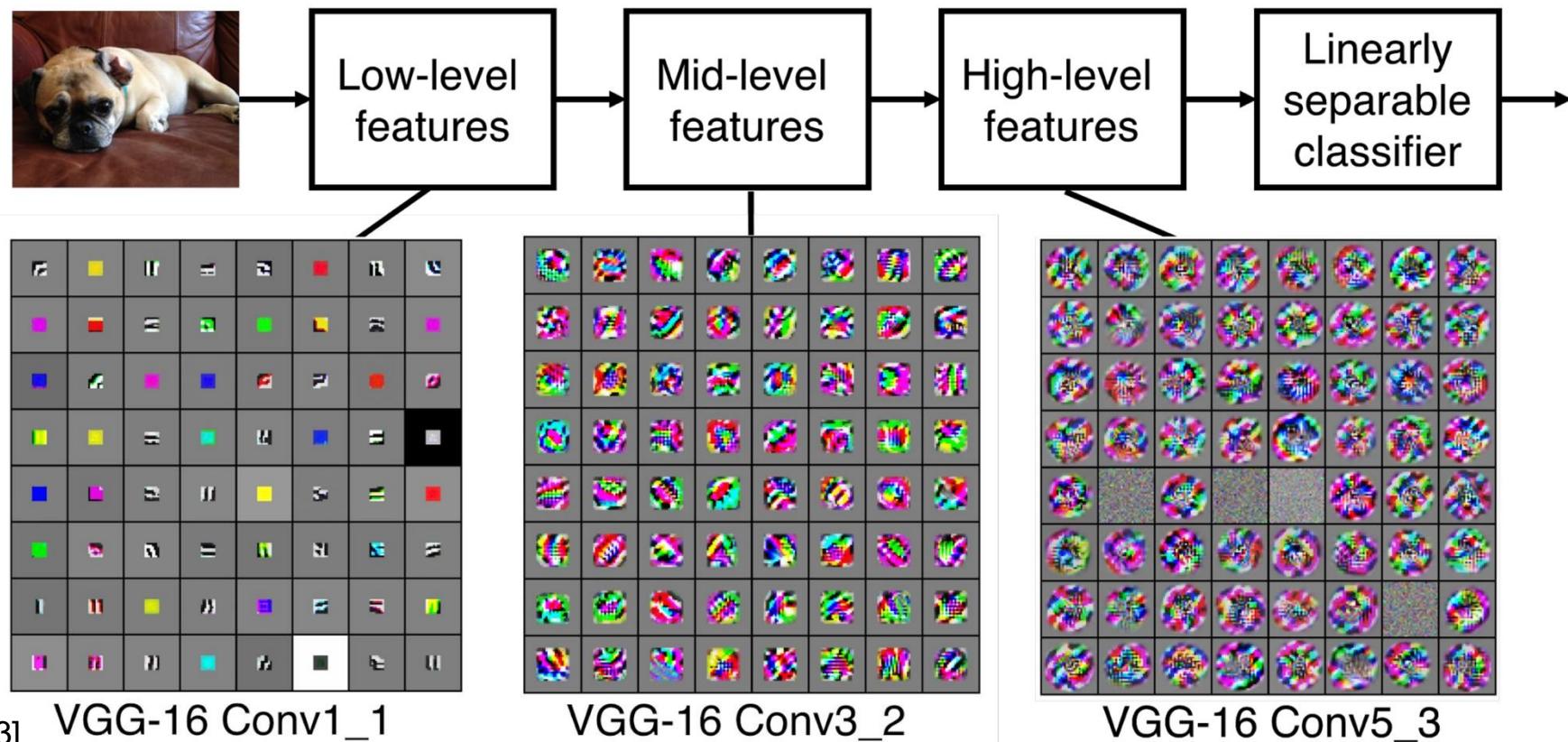
Convolution

- Convolve the filter with the image: slide over the image spatially and compute dot products



CNNs

- A sequence of convolutional layers, interspersed by pooling, normalization, and activation functions

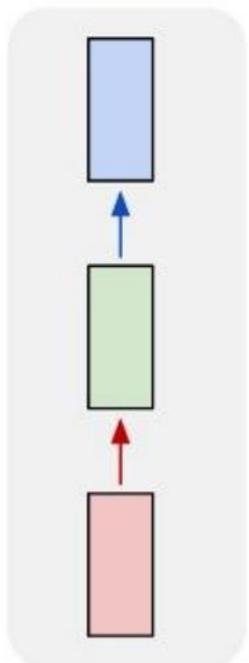


Understand Our Applications: An Overview of Deep Learning Models

- **Convolutional Neural Networks: vision tasks**
- **Recurrent Neural Networks**
- **Transformer**
- **Graph Neural Networks**
- **Mixture-of-Experts**

Recurrent Neural Networks: Process Sequences

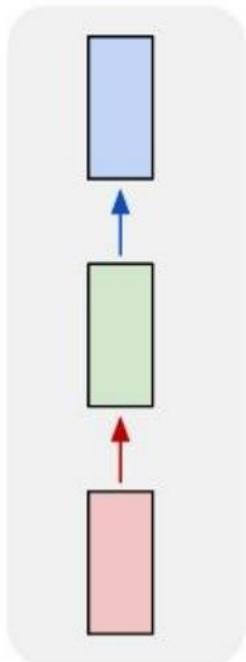
one to one



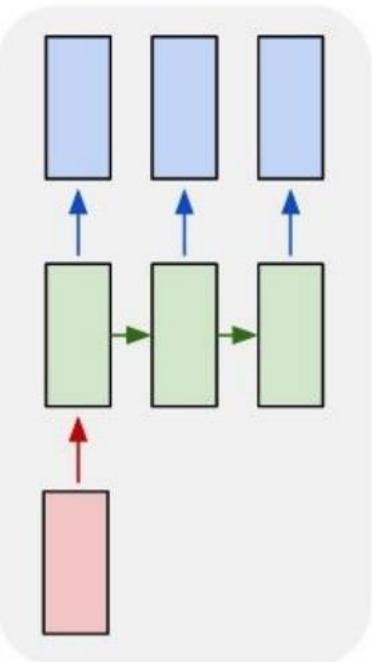
Vanilla Neural Networks

Recurrent Neural Networks: Process Sequences

one to one



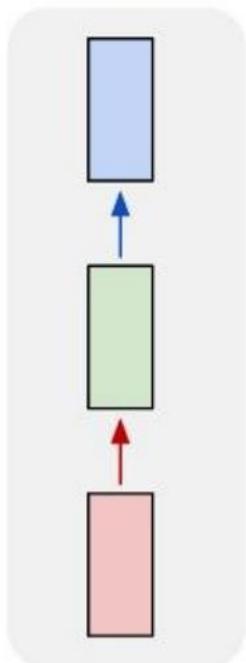
one to many



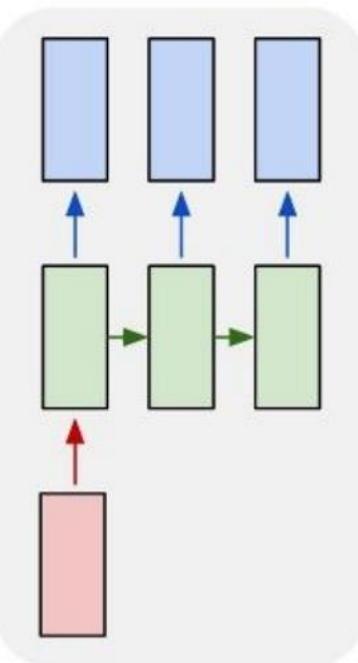
e.g., image captioning
Image -> sequence of words

Recurrent Neural Networks: Process Sequences

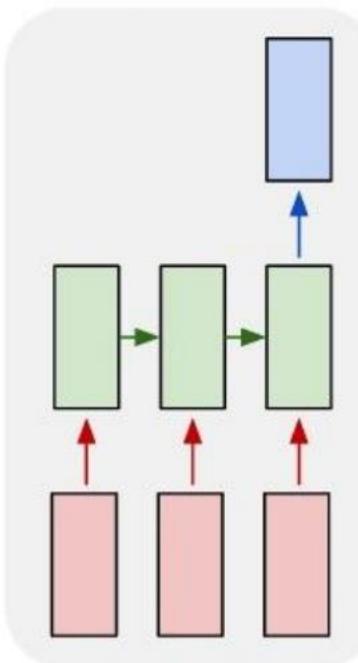
one to one



one to many



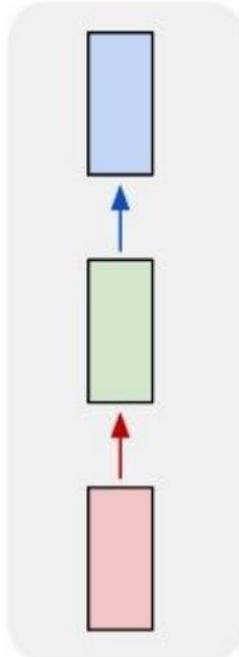
many to one



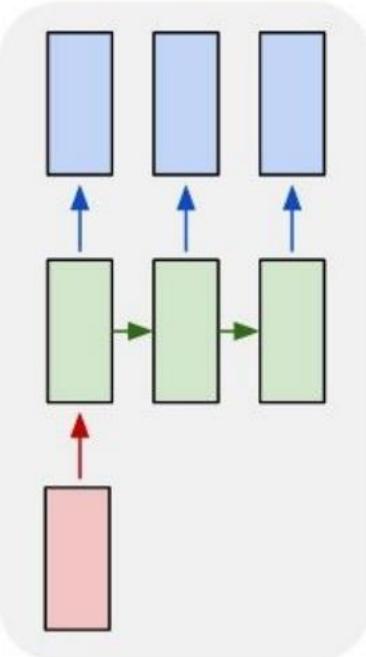
e.g., action prediction
sequence of video frames \rightarrow action

Recurrent Neural Networks: Process Sequences

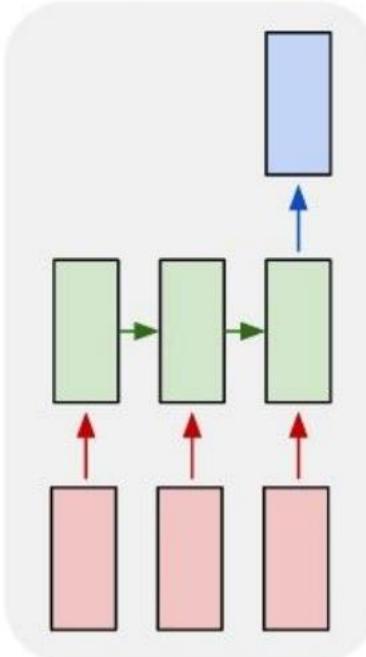
one to one



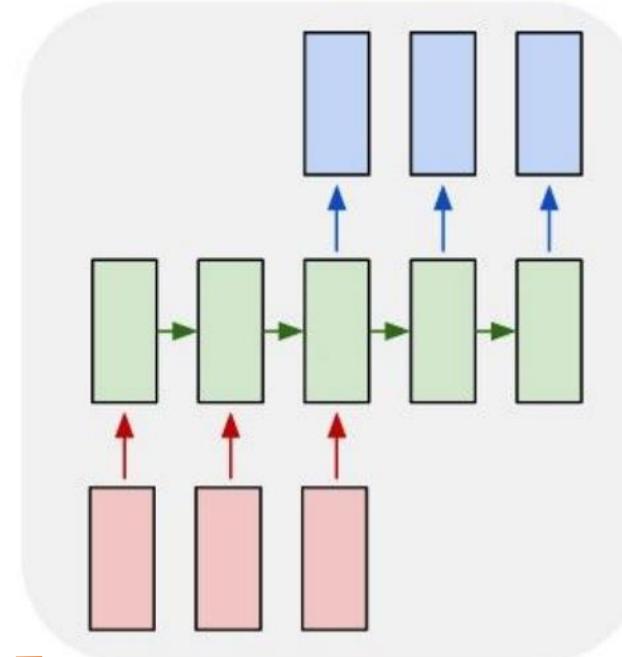
one to many



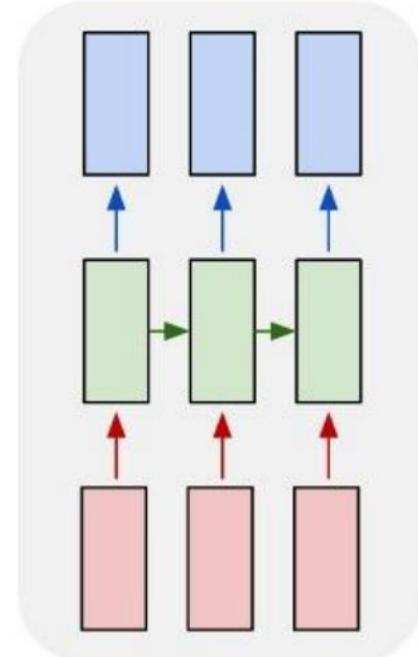
many to one



many to many



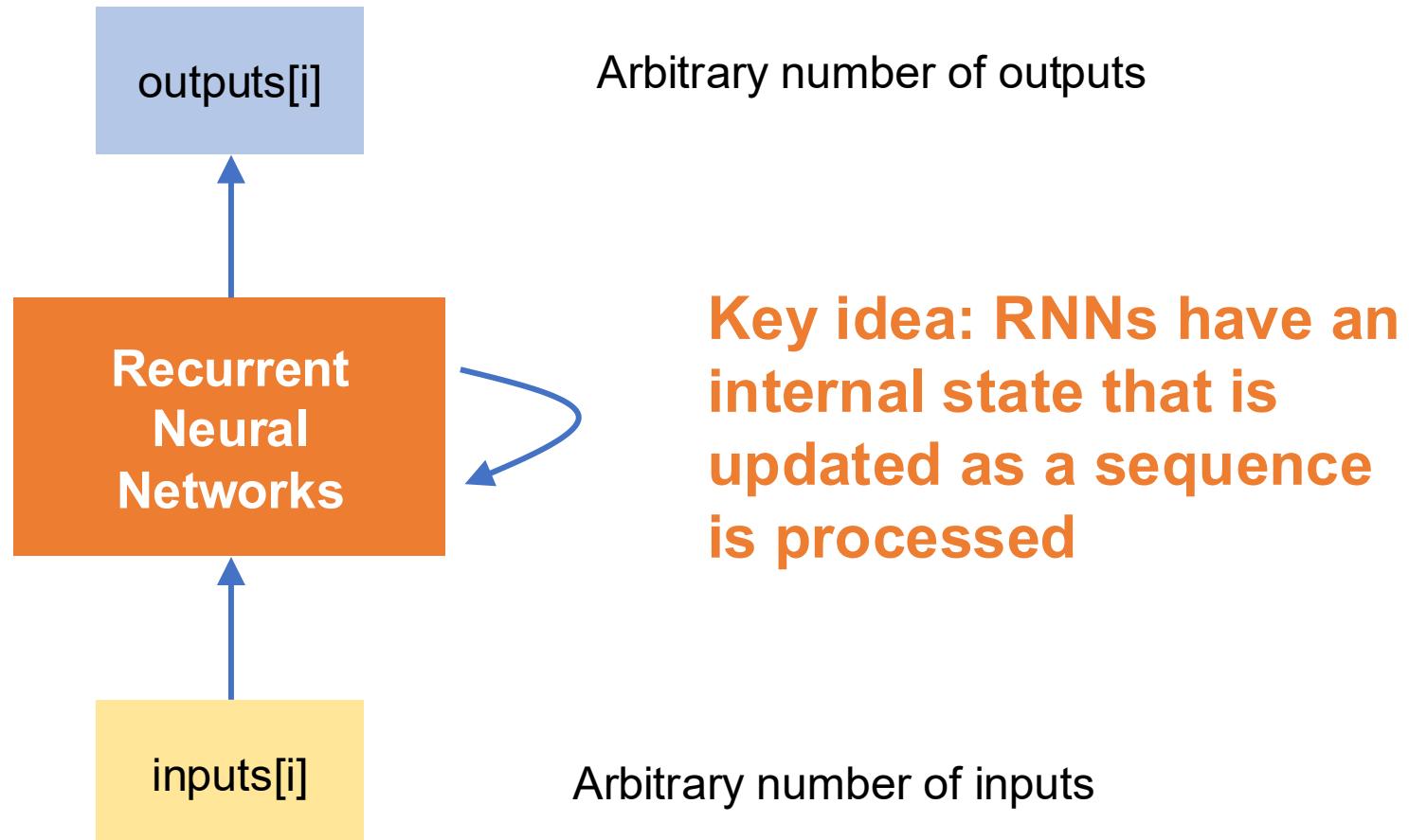
many to many



Video captioning: sequence of
video frames \rightarrow sequence of words
Machine translation

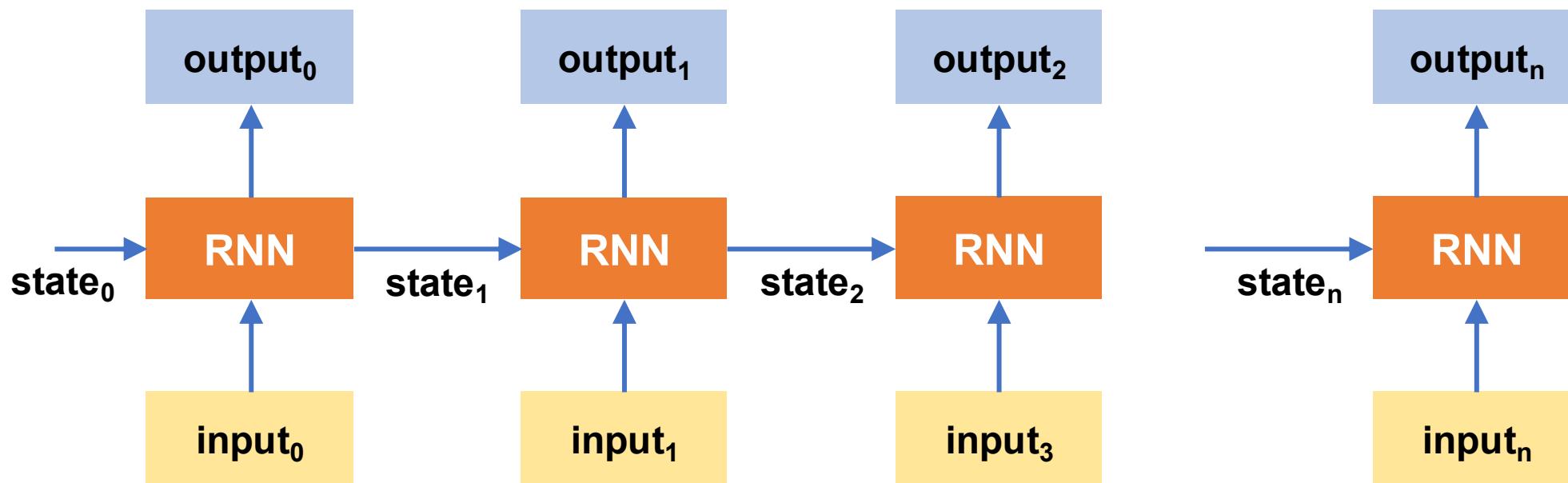
Video classification
on frames

Recurrent Neural Networks



How to Represent RNNs in Computation Graphs

- Computation graphs must be direct acyclic graphs (DAGs) but RNNs have self loops
- **Solution:** unrolling RNNs (define maximum depth)



When do we need RNNs?

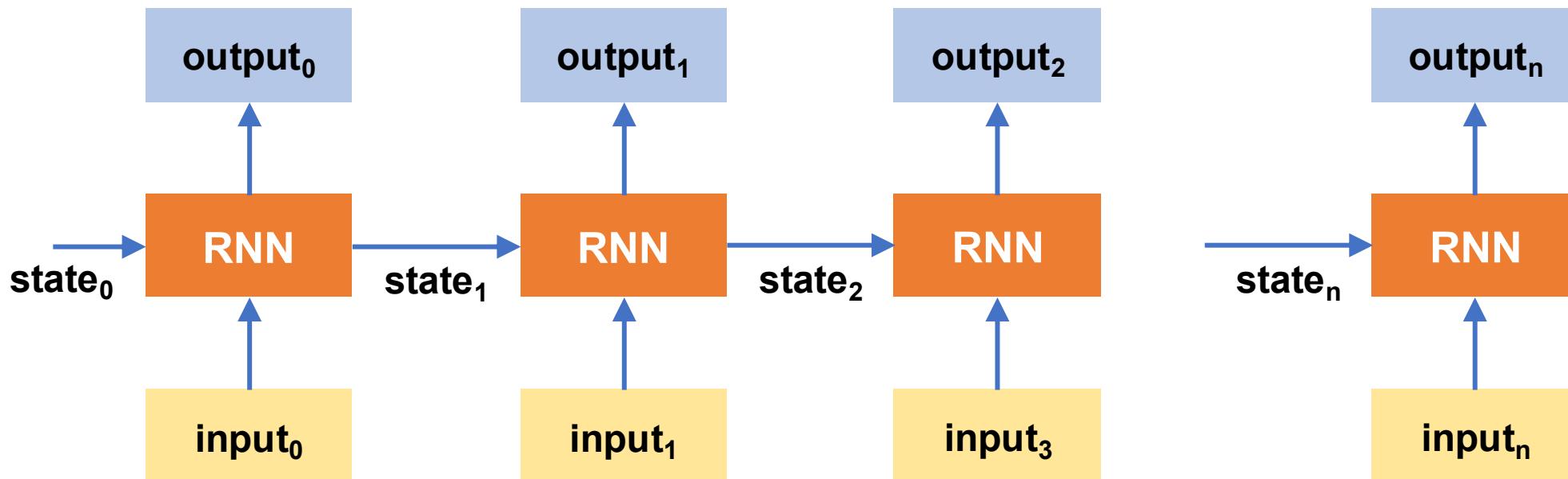
- RNNs are designed to process sequences (texts, videos)
- RNNs are extremely useful when you want your model to have internal states when a sequence is processed
 - Commonly used in reinforcement learning (RL)

Understand Our Applications: An Overview of Deep Learning Models

- **Convolutional Neural Networks**
- **Recurrent Neural Networks**
- **Transformers**
- **Graph Neural Networks**
- **Mixture-of-Experts**

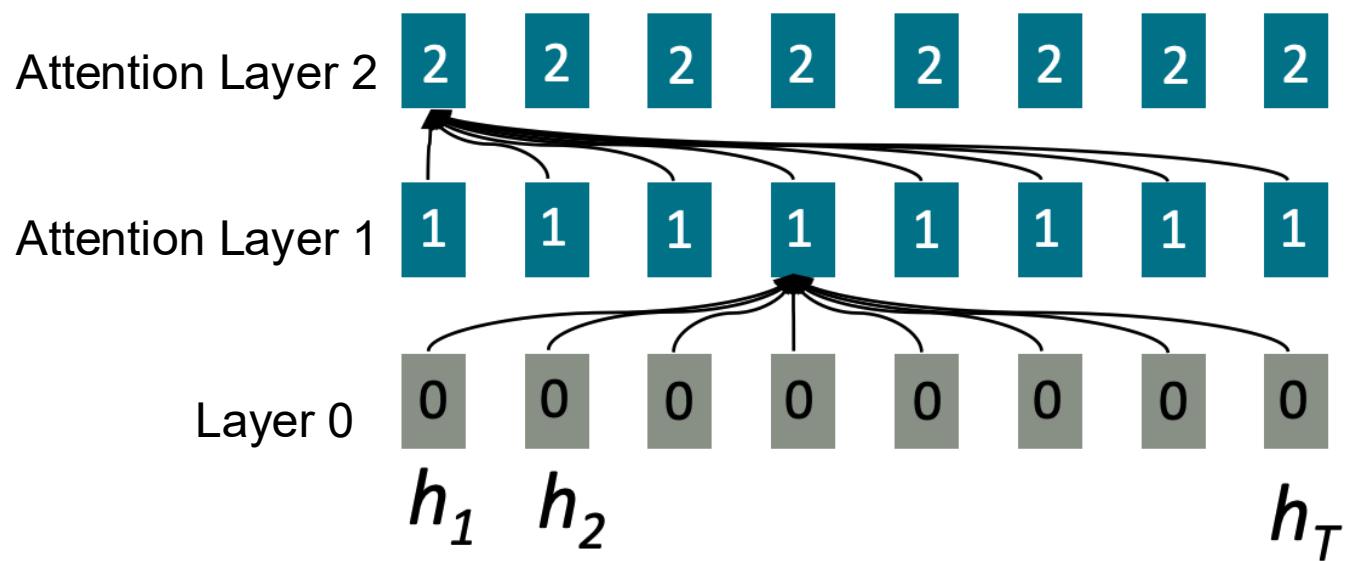
Inefficiency in RNNs?

- **Problem:** lack of parallelizability. Both forward and backward passes have $O(\text{sequence length})$ unparallelizable operators
 - A state cannot be computed before all previous states have been computed
 - Inhibits training on very long sequences



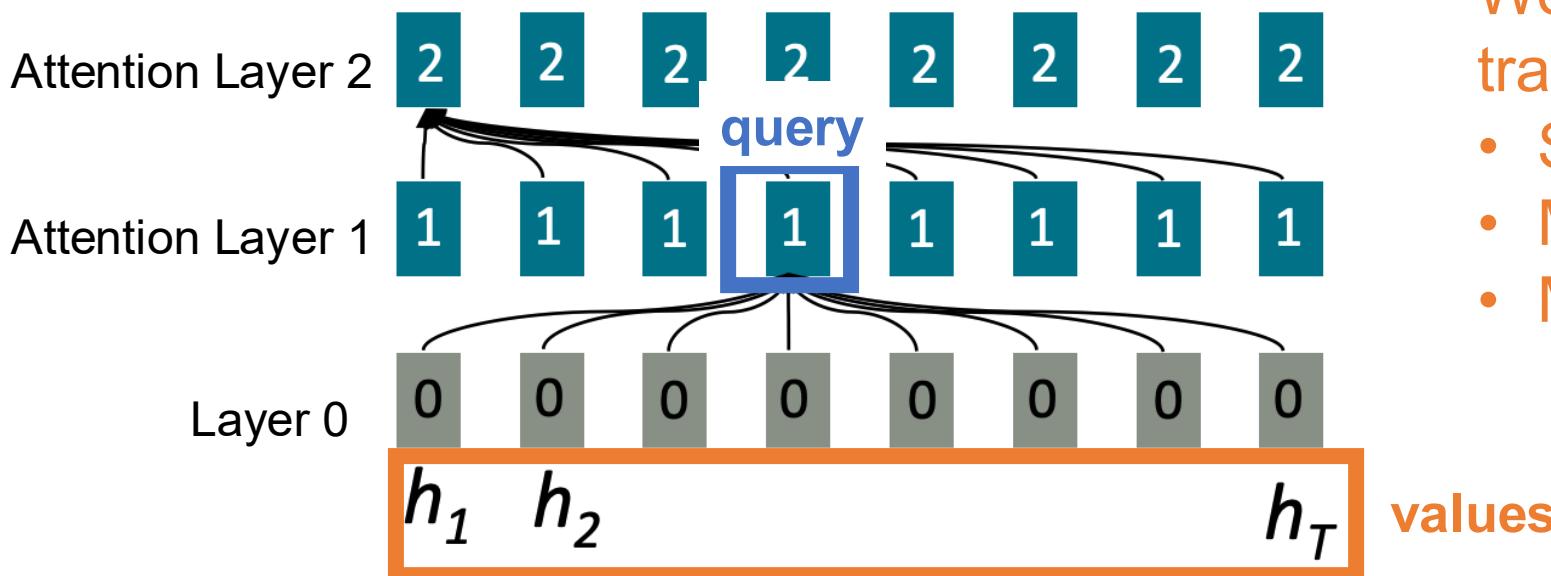
Attention: Enable Parallelism within a Sequence

- Idea: treat each position's representation as a **query** to access and incorporate information from a set of **values**



Attention: Enable Parallelism within a Sequence

- Idea: treat each position's representation as a **query** to access and incorporate information from a set of **values**
- Massively parallelizable: number of unparallelizable operations does not increase sequence length



We will learn attention and transformers in depth later:

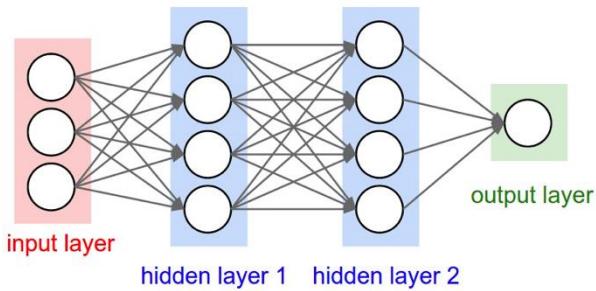
- Self-attention
- Masked attention
- Multi-head attention

Understand Our Applications: An Overview of Deep Learning Models

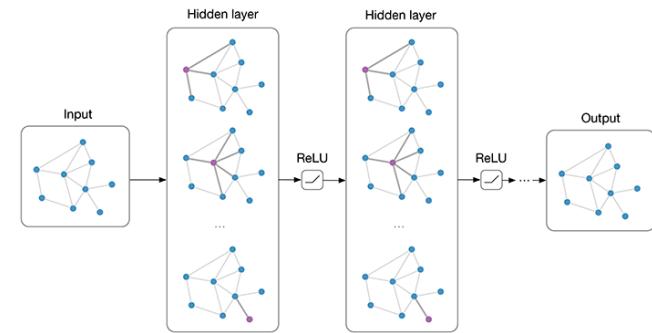
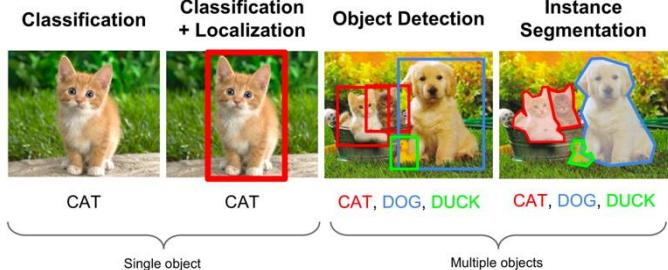
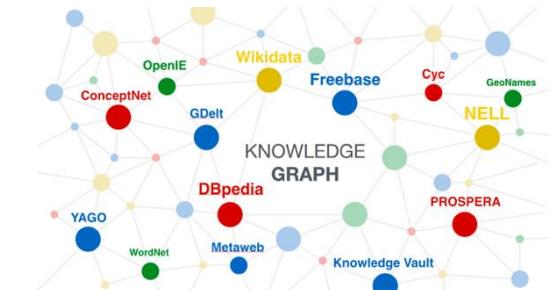
- **Convolutional Neural Networks**
- **Recurrent Neural Networks**
- **Transformers**
- **Graph Neural Networks**
- **Mixture-of-Experts**

GNNs: Neural Networks on Relational Data

Neural Networks



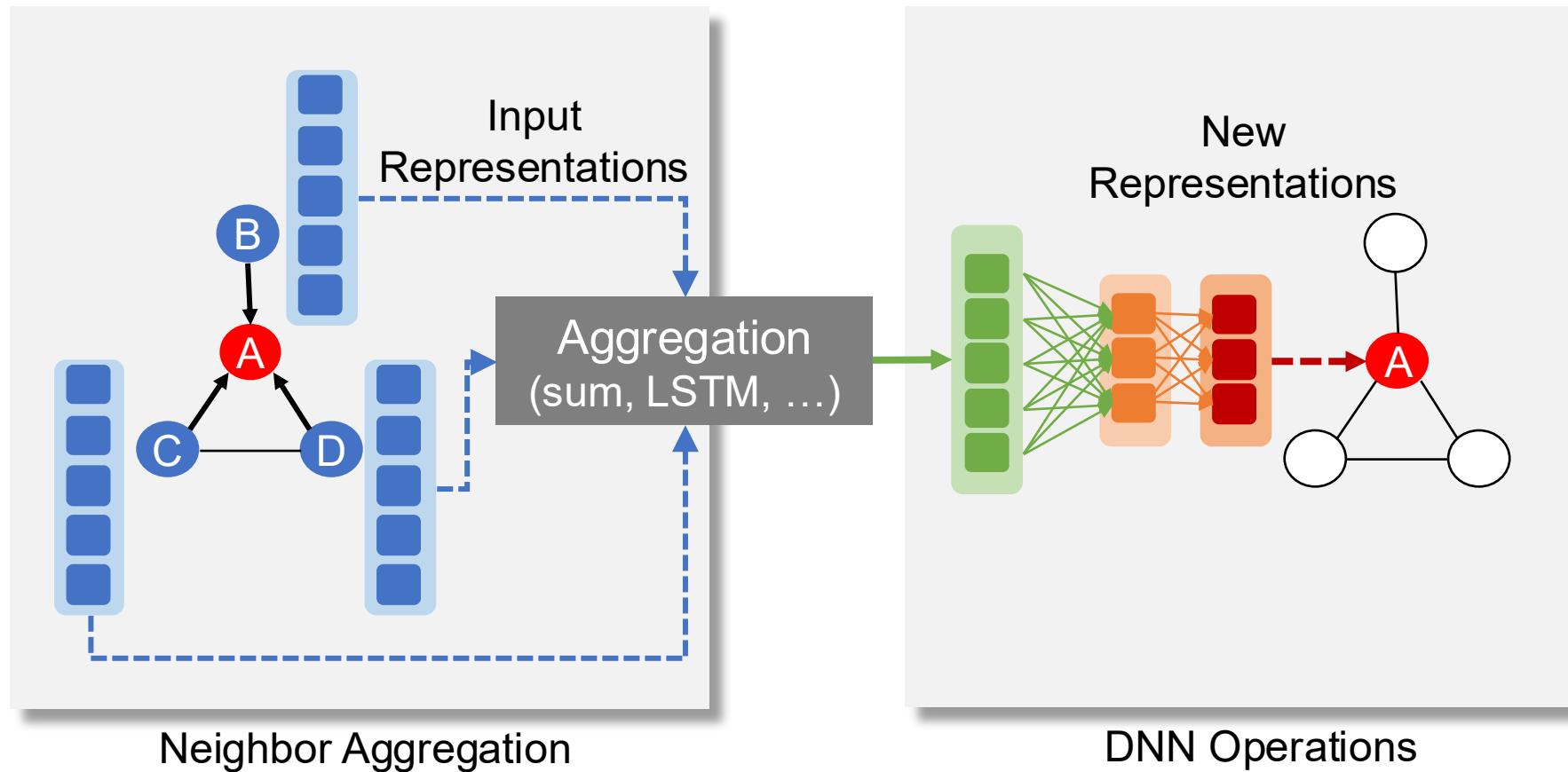
Graph Neural Networks



Graph Neural Network Architecture

- Combine **graph propagation** w/ **neural network operations**

● Target vertex
● Neighbors

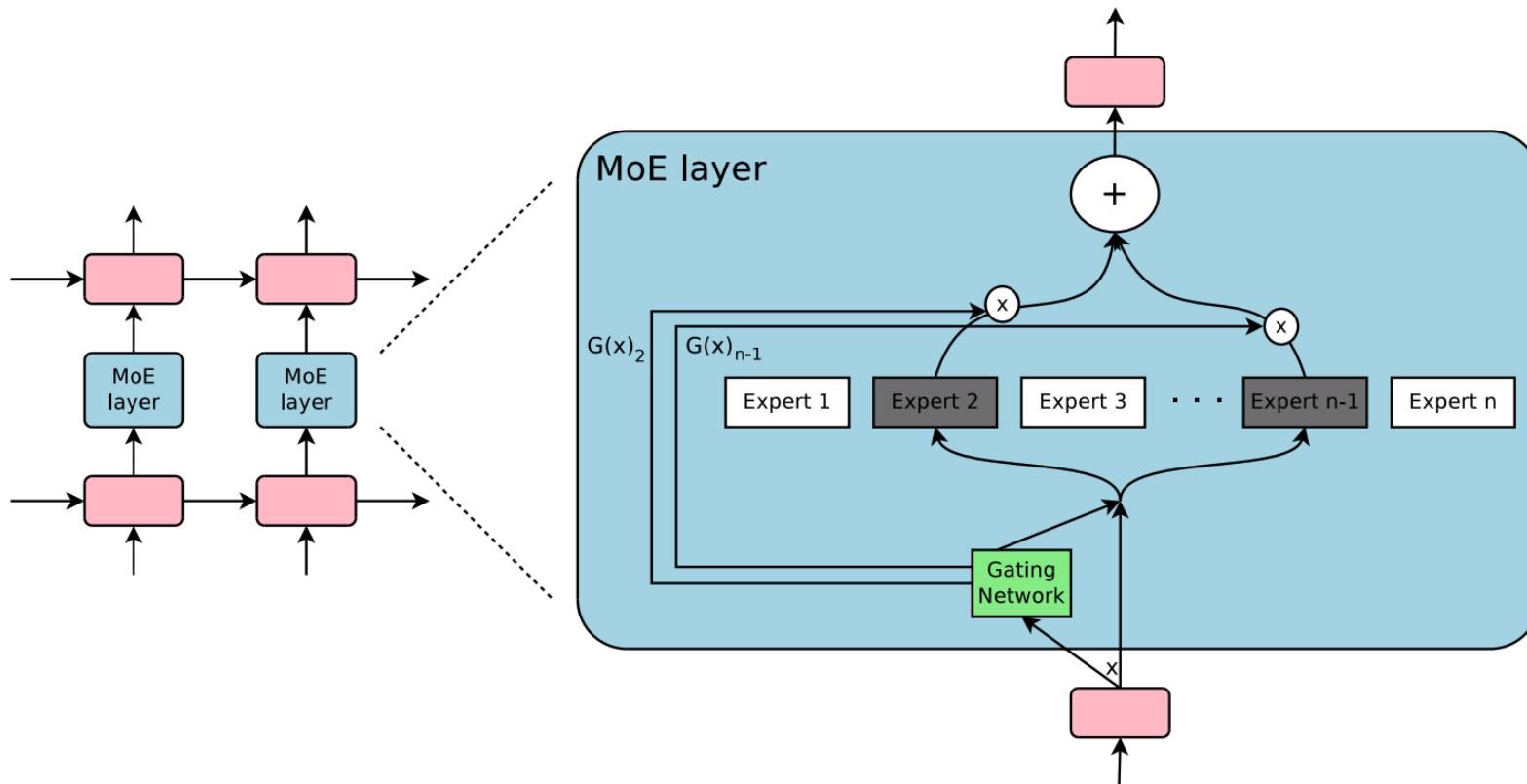


Understand Our Applications: An Overview of Deep Learning Models

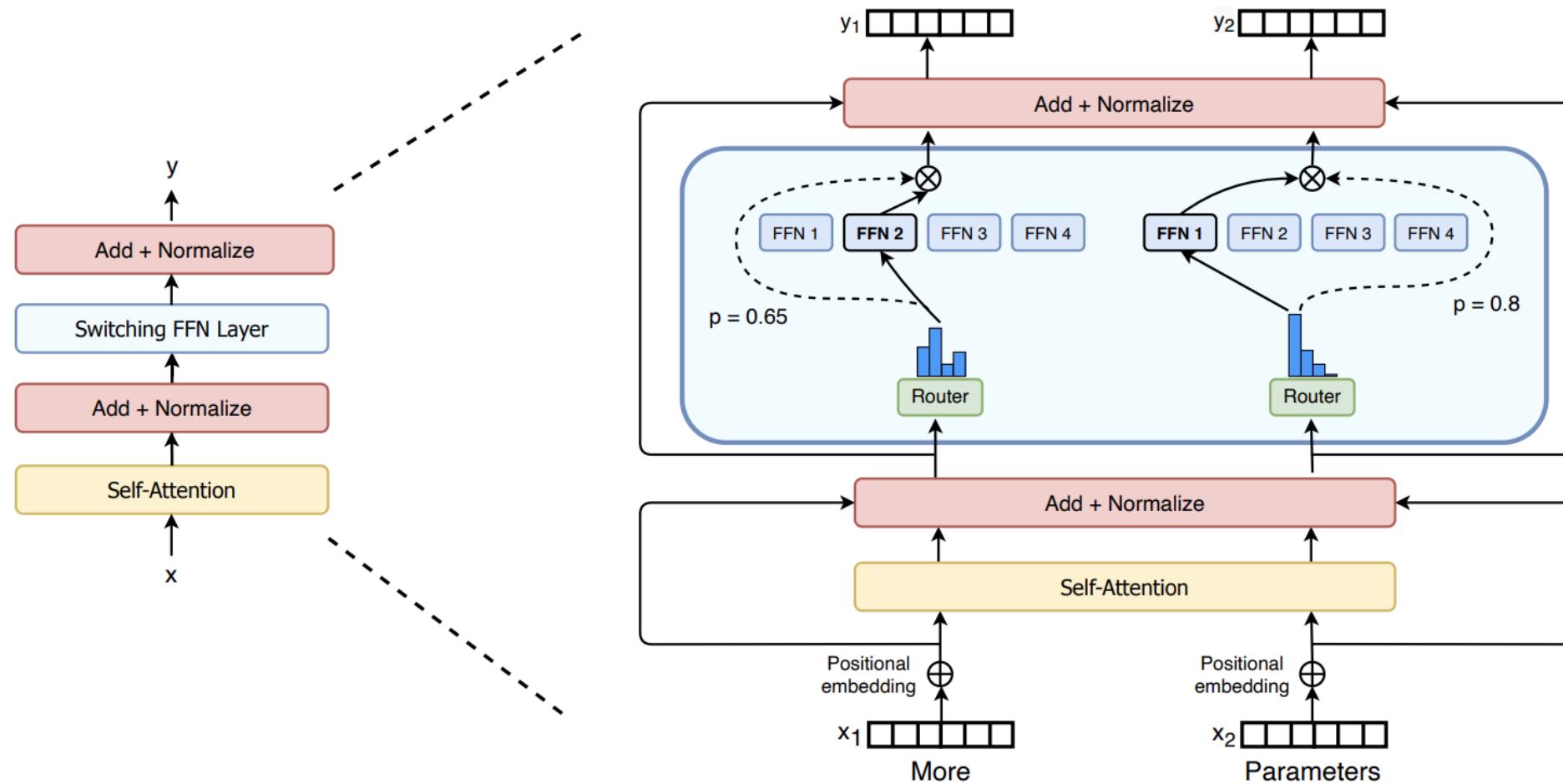
- **Convolutional Neural Networks**
- **Recurrent Neural Networks**
- **Transformers**
- **Graph Neural Networks**
- **Mixture-of-Experts**

Mixture-of-Experts

- **Key idea:** make each expert focus on predicting the right answer for a subset of cases



Switch Transformers = Transformers + Mixture of Experts



Outline

Overview of deep learning

Programming abstractions for deep learning

Deep Learning Ingredients

- Model and architecture
- Objective function and training techniques
- Regularization, normalization and initialization (coupled with modeling)
 - Batch norm, dropout, Xavier
- Get good amount of data

Application affects System Design

Application	Data Management	Data Processing
System Design	Declarative language(SQL) Execution planner Storage engine	Distributed Primitive(MapReduce) Fault tolerance layer Workload migration

Deep Learning Ingredients

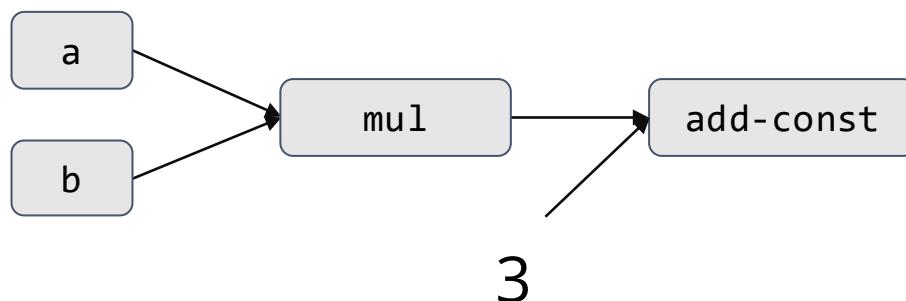
- Model and architecture
- Objective function and training techniques
- Regularization, normalization and initialization (coupled with modeling)
 - Batch norm, dropout, Xavier
- Get good amount of data

Discussion how can these ingredients affect the system design of ML frameworks

Computational Graph Abstraction

- Nodes represents the computation (operation)
- Edge represents the data dependency between operations

Computational Graph for $a * b + 3$



Case Study of Computational

- In the next few slides, we will do a case study of a deep learning program using TensorFlow v1 style API.
- Note that the most deep learning frameworks now use a different style, but share the same mechanism under the hood
- Think about **abstraction** and **implementation** when going through these examples

Logistic Regression

Input

$$x_i = \begin{bmatrix} \text{pixel}_1 \\ \text{pixel}_2 \\ \dots \\ \text{pixel}_m \end{bmatrix} \quad \rightarrow$$

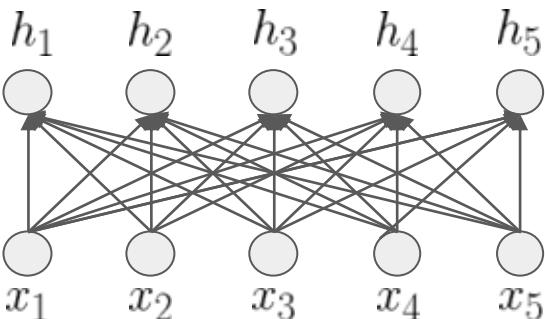
One Linear Layer

$$h_k = w_k^T x_i \quad \rightarrow$$

Softmax

$$P(y_i = k|x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_j)}$$

3 4 2 1 9 5 6 2 1 8
8 9 1 2 5 0 0 6 6 4
6 7 0 1 6 3 6 3 7 0
3 7 7 9 4 6 6 1 8 2
2 9 3 4 3 9 8 7 2 5
1 5 9 8 3 6 5 7 2 3
9 3 1 9 1 5 8 0 8 4
5 6 2 6 8 5 8 8 9 9
3 7 7 0 9 4 8 5 4 3
7 9 6 4 7 0 6 9 2 3



Logistic Regression in TF1-style API

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Forward Computation
Declaration

Logistic Regression in TF1-style API

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Loss function Declaration

$$P(\text{label} = k) = y_k$$
$$L(y) = \sum_{k=1}^{10} I(\text{label} = k) \log(y_i)$$

Logistic Regression in TF1-style API

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Automatic Differentiation:
Next incoming topic

Logistic Regression in TF1-style API

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

SGD update rule

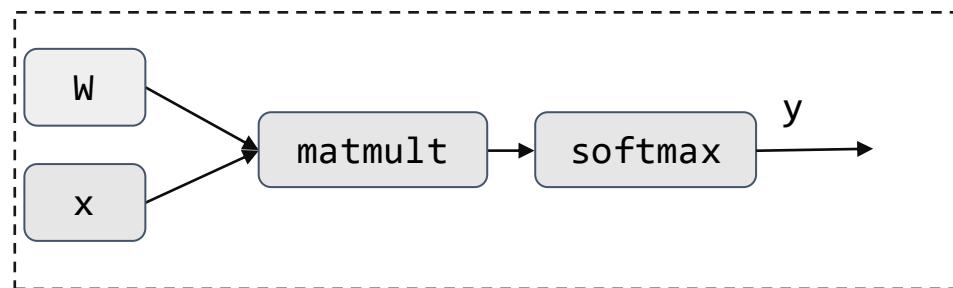
Logistic Regression in TF1-style API

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Real execution happens here!

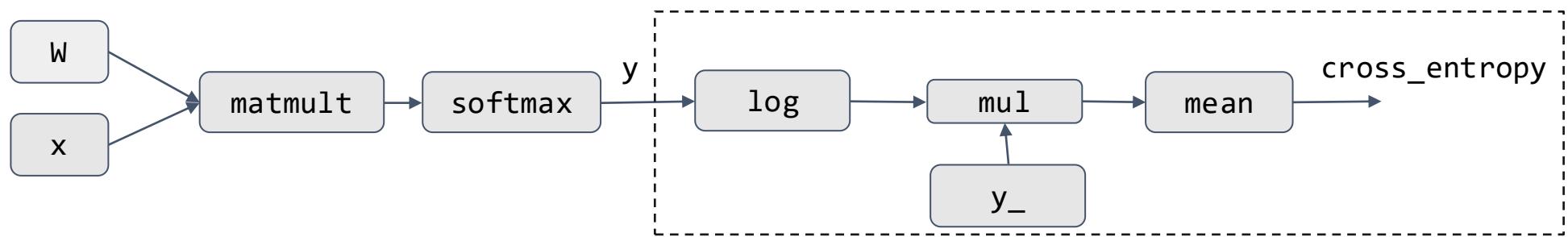
Computational Graph Construction by Step

```
x = tf.placeholder(tf.float32, [None, 784])  
W = tf.Variable(tf.zeros([784, 10]))  
y = tf.nn.softmax(tf.matmul(x, W))
```



Computational Graph Construction by Step

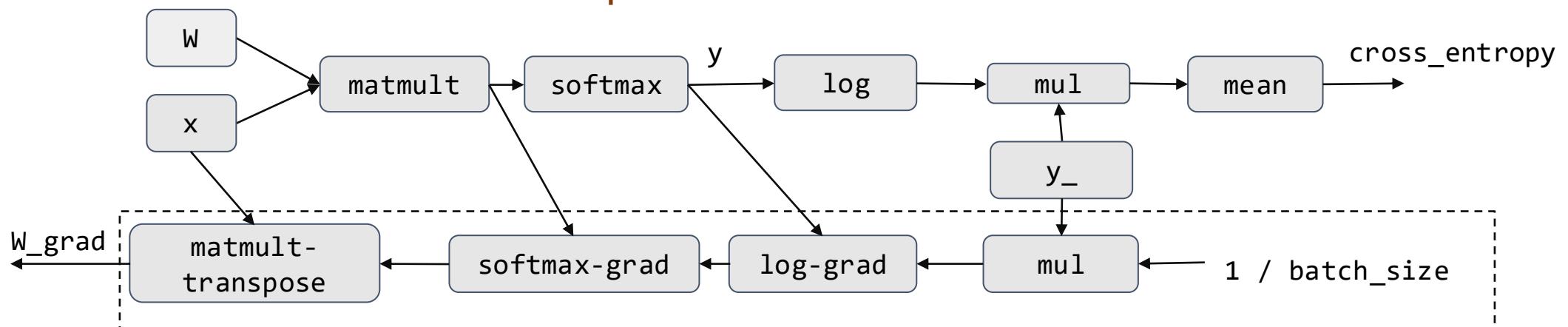
```
y_ = tf.placeholder(tf.float32, [None, 10])  
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
```



Computational Graph Construction by Step

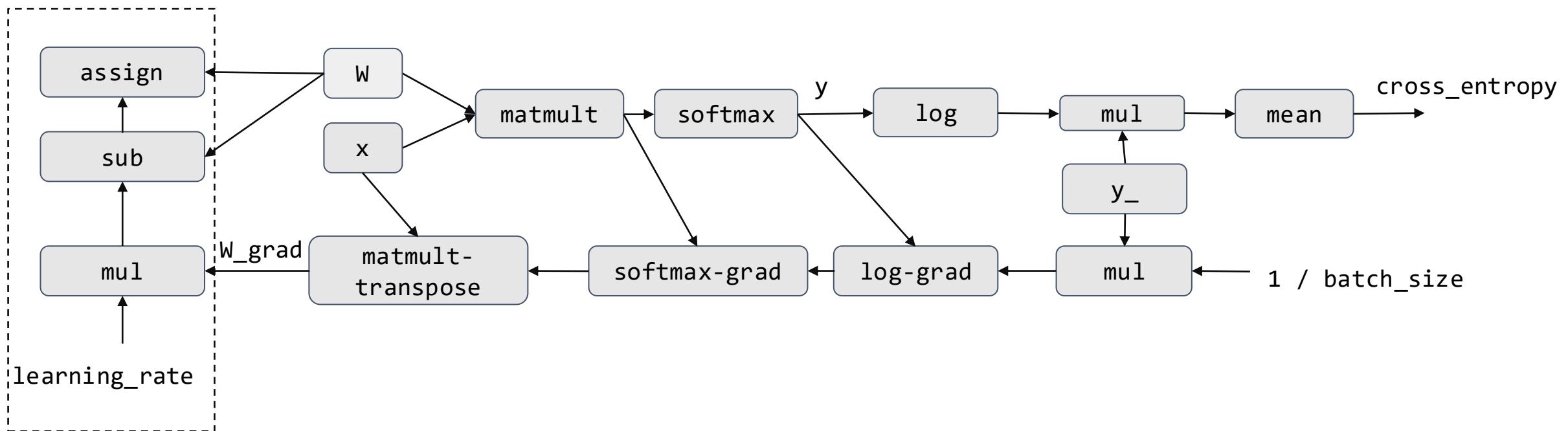
```
w_grad = tf.gradients(cross_entropy, [W])[0]
```

Automatic Differentiation, more details in
follow up lectures



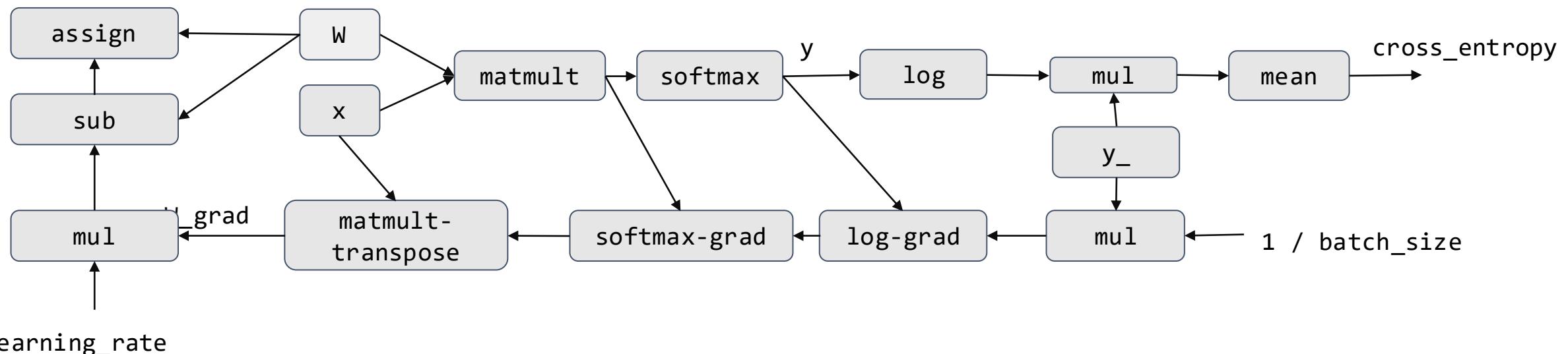
Computational Graph Construction by Step

```
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```



Computational Graph Construction by Step

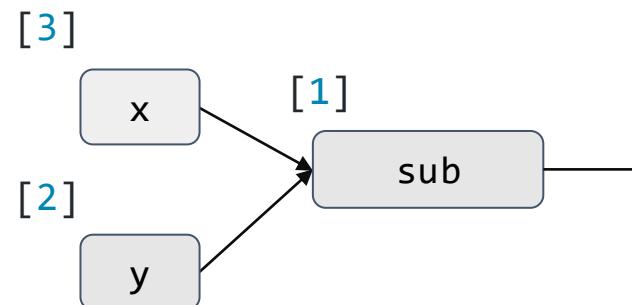
- What are the benefits of computational graph **abstraction**?
- What are possible **implementation** and **optimizations** on top of this abstraction



Imperative Computational Graph Construction

- TF1 style API uses a **define then run** approach
 - First construct the whole computational graph, then run the computation
- PyTorch and other frameworks uses a **define and run** approach
 - constructs the computational graph on the fly, along side the computations

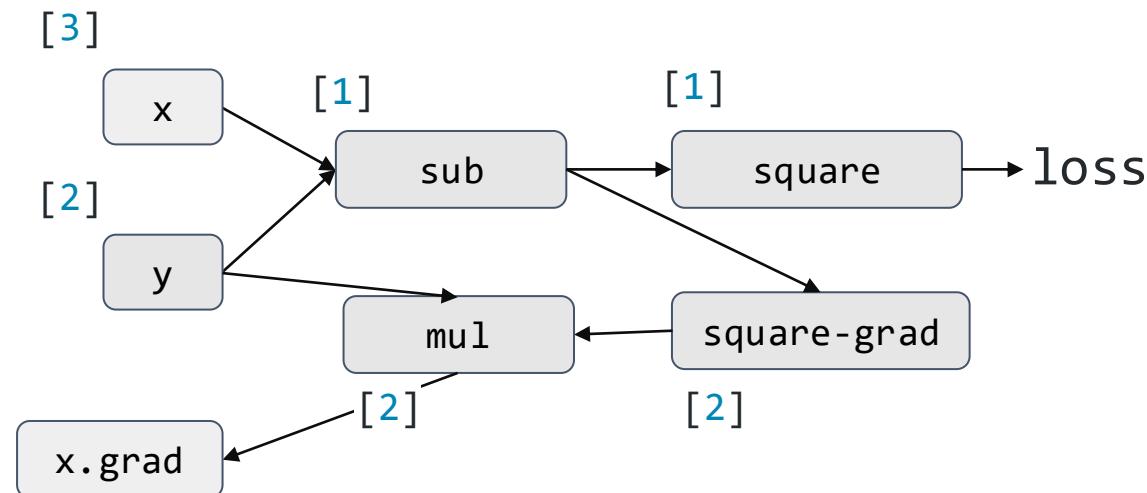
```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
```



Imperative Computational Graph Construction

- TF1 style API uses a **define then run** approach
 - First construct the whole computational graph, then run the computation
- PyTorch and other frameworks uses a **define and run** approach
 - constructs the computational graph on the fly, along side the computations

```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```



y.grad's path is omitted

TF1 vs PyTorch Style API

- Both leverages computational graph abstraction under the hood
- Define and run gives more flexibility to programmer

```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
print(z)
```

- Define then run still brings some benefits
 - See the entire computational graph to do global optimization
- Active topic of research, hybrid approaches such as JIT compilation