
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Deep Learning and Programming
Abstraction

Spring 2026

Tianqi Chen and Zhihao Jia

Carnegie Mellon University

1
1/21/2026

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of deep learning

Programming abstractions for deep learning

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of deep learning

Programming abstractions for deep learning

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Elements of Machine Learning

• Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given
set of parameters

• Training (optimization) method

A procedure to find a set of
parameters that minimizes the loss

4

Logistic regression model

Regularized loss function

Stochastic gradient descent

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• Compositional multi-layer model

• End to end training: learning parameters of all layers together

• NOTE: the other ingredients (loss and training) remains the same as other machine
learning methods

Deep Learning, Key Ideas

Layer 1 Layer 2 Prediction

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications:
An Overview of Deep Learning Models

6

• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CNNs are widely used in vision tasks

7

Classification Retrieval Detection

Segmentation Self-Driving Synthesis

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Convolution

• Convolve the filter with the image: slide over the image spatially and
compute dot products

8

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

9[Zeiler and Fergus 2013]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications:
An Overview of Deep Learning Models

10

• Convolutional Neural Networks: vision tasks

• Recurrent Neural Networks

• Transformer

• Graph Neural Networks

• Mixture-of-Experts

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recurrent Neural Networks: Process Sequences

11

Vanilla Neural Networks

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recurrent Neural Networks: Process Sequences

12

e.g., image captioning

Image -> sequence of words

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recurrent Neural Networks: Process Sequences

13

e.g., action prediction

sequence of video frames -> action

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recurrent Neural Networks: Process Sequences

14

Video captioning: sequence of

video frames -> sequence of words

Machine translation

Video classification

on frames

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recurrent Neural Networks

15

outputs[i]

Recurrent

Neural

Networks

inputs[i]

Key idea: RNNs have an

internal state that is

updated as a sequence

is processed

Arbitrary number of outputs

Arbitrary number of inputs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to Represent RNNs in Computation Graphs

• Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

• Solution: unrolling RNNs (define maximum depth)

16

output0

RNN

input0

state0

output1

RNN

input1

state1

output2

RNN

input3

state2

outputn

RNN

inputn

staten

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

When do we need RNNs?

• RNNs are designed to process sequences (texts, videos)

• RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

• Commonly used in reinforcement learning (RL)

17

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications:
An Overview of Deep Learning Models

18

• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Inefficiency in RNNs?

• Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

• A state cannot be computed before all previous states have been
computed

• Inhibits training on very long sequences

19

output0

RNN

input0

state0

output1

RNN

input1

state1

output2

RNN

input3

state2

outputn

RNN

inputn

staten

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

20

Layer 0

Attention Layer 1

Attention Layer 2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

• Massively parallelizable: number of unparallelizable operations does not
increase sequence length

21

Layer 0

Attention Layer 1

Attention Layer 2

We will learn attention and

transformers in depth later:

• Self-attention

• Masked attention

• Multi-head attention

values

query

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications:
An Overview of Deep Learning Models

22

• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GNNs: Neural Networks on Relational Data

23

Neural Networks Graph Neural Networks

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A

DNN Operations

Aggregation
(sum, LSTM, …)

Neighbor Aggregation

Graph Neural Network Architecture

• Combine graph propagation w/ neural network operations

24

B

A

DC

Target vertex

Neighbors

Input

Representations
New

Representations

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Understand Our Applications:
An Overview of Deep Learning Models

25

• Convolutional Neural Networks

• Recurrent Neural Networks

• Transformers

• Graph Neural Networks

• Mixture-of-Experts

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Mixture-of-Experts

• Key idea: make each expert focus on predicting the right answer for a
subset of cases

26

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Switch Transformers = Transformers + Mixture of Experts

27

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Overview of deep learning

Programming abstractions for deep learning

28

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)

Execution planner

Storage engine

Data Processing

Distributed Primitive(MapReduce)

Fault tolerance layer

Workload migration

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data

Discussion how can these
ingredients affect the system
design of ML frameworks

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Computational Graph Abstraction

• Nodes represents the computation (operation)

• Edge represents the data dependency between operations

32

a

b

mul add-const

3

Computational Graph for a * b +3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Case Study of Computational

• In the next few slides, we will do a case study of a deep learning program
using TensorFlow v1 style API.

• Note that the most deep learning frameworks now use a different style, but
share the same mechanism under the hood

• Think about abstraction and implementation when going through these
examples

33

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Logistic Regression

Input One Linear Layer Softmax

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Forward Computation
Declaration

Logistic Regression in TF1-style API

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Loss function Declaration

Logistic Regression in TF1-style API

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Automatic Differentiation:
Next incoming topic

Logistic Regression in TF1-style API

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

SGD update rule

Logistic Regression in TF1-style API

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Real execution happens
here!

Logistic Regression in TF1-style API

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Computational Graph Construction by Step

40

W

x

matmult softmax

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

y

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

W

x

matmult softmax log

y_

mul mean
y cross_entropy

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Computational Graph Construction by Step

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

y cross_entropy

W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in
follow up lectures

Computational Graph Construction by Step

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign
y cross_entropy

Computational Graph Construction by Step

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign
y cross_entropy

• What are the benefits of computational graph abstraction?

• What are possible implementation and optimizations on top of this
abstraction

Computational Graph Construction by Step

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Imperative Computational Graph Construction

• TF1 style API uses a define then run approach

• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

45

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

x

y

sub

[3]

[2]

[1]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Imperative Computational Graph Construction

• TF1 style API uses a define then run approach

• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

46

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

loss = square(z)

loss.backward()

print(x.grad)

x

y

sub

[3]

[2]
square

[1] [1]

square-grad

[2]

mul

x.grad

[2]

loss

y.grad’s path is omitted

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• Both leverages computational graph abstraction under the hood

• Define and run gives more flexibility to programmer

• Define then run still brings some benefits
• See the entire computational graph to do global optimization

• Active topic of research, hybrid approaches such as JIT compilation

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

print(z)

TF1 vs PyTorch Style API

	Slide 1: 15-442/15-642: Machine Learning Systems Deep Learning and Programming Abstraction
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Elements of Machine Learning
	Slide 5: Deep Learning, Key Ideas
	Slide 6: Understand Our Applications: An Overview of Deep Learning Models
	Slide 7: CNNs are widely used in vision tasks
	Slide 8: Convolution
	Slide 9: CNNs
	Slide 10: Understand Our Applications: An Overview of Deep Learning Models
	Slide 11: Recurrent Neural Networks: Process Sequences
	Slide 12: Recurrent Neural Networks: Process Sequences
	Slide 13: Recurrent Neural Networks: Process Sequences
	Slide 14: Recurrent Neural Networks: Process Sequences
	Slide 15: Recurrent Neural Networks
	Slide 16: How to Represent RNNs in Computation Graphs
	Slide 17: When do we need RNNs?
	Slide 18: Understand Our Applications: An Overview of Deep Learning Models
	Slide 19: Inefficiency in RNNs?
	Slide 20: Attention: Enable Parallelism within a Sequence
	Slide 21: Attention: Enable Parallelism within a Sequence
	Slide 22: Understand Our Applications: An Overview of Deep Learning Models
	Slide 23: GNNs: Neural Networks on Relational Data
	Slide 24: Graph Neural Network Architecture
	Slide 25: Understand Our Applications: An Overview of Deep Learning Models
	Slide 26: Mixture-of-Experts
	Slide 27: Switch Transformers = Transformers + Mixture of Experts
	Slide 28: Outline
	Slide 29: Deep Learning Ingredients
	Slide 30: Application affects System Design
	Slide 31: Deep Learning Ingredients
	Slide 32: Computational Graph Abstraction
	Slide 33: Case Study of Computational
	Slide 34: Logistic Regression
	Slide 35: Logistic Regression in TF1-style API
	Slide 36: Logistic Regression in TF1-style API
	Slide 37: Logistic Regression in TF1-style API
	Slide 38: Logistic Regression in TF1-style API
	Slide 39: Logistic Regression in TF1-style API
	Slide 40: Computational Graph Construction by Step
	Slide 41: Computational Graph Construction by Step
	Slide 42: Computational Graph Construction by Step
	Slide 43: Computational Graph Construction by Step
	Slide 44: Computational Graph Construction by Step
	Slide 45: Imperative Computational Graph Construction
	Slide 46: Imperative Computational Graph Construction
	Slide 47: TF1 vs PyTorch Style API

