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Elements of Machine Learning

 Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

* Loss function
How “well” are we doing for a given
set of parameters

* Training (optimization) method
A procedure to find a set of
parameters that minimizes the loss
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Deep Learning, Key ldeas

« Compositional multi-layer model

Layer 1 Layer 2 Prediction
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« End to end training: learning parameters of all layers together

 NOTE: the other ingredients (loss and training) remains the same as other machine
learning methods



Understand Our Applications:
An Overview of Deep Learning Models

 Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks
 Mixture-of-Experts
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Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products
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CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level Mid-level High-level separable
features features features -
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Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many
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e.d., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt 1 !
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e.g., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames
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Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
B > internal state that is
Neural
updated as a sequence
is processed

Networks

T

inputsi] Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

+ Solution: unrolling RNNs (define maximum depth)

output, output, output, output,

input, input, input; input,
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When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)
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Understand Our Applications:
An Overview of Deep Learning Models

e Transformers
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Inefficiency in RNNs?

» Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

|npu% input, input; input,




Attention: Enable Parallelism within a Sequence

 Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

Attention Layer 2
Attention Layer 1
vero 0 @ 0 0 0 B O

h, h, h

T
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Attention: Enable Parallelism within a Sequence

 Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

« Massively parallelizable: number of unparallelizable operations does not
Increase sequence length

We will learn attention and

Attention Layer2 2 transformers in depth later:

query

S o Self-attention
« Masked attention

[
Attention Layer 1
* Multi-head attention

vero 0| O 0| O [0l @ O
h, h, h] values
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Understand Our Applications:
An Overview of Deep Learning Models

 Graph Neural Networks
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Classification

GNNs: Neural Networks on Relational Data

Neural Networks
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Graph Neural Network Architecture

« Combine graph propagation w/ neural network operations

O
m Input New

Representations Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations
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Understand Our Applications:
An Overview of Deep Learning Models

 Mixture-of-Experts
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Mixture-of-Experts

: make each expert focus on predicting the right answer for a
subset of cases
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Switch Transformers = Transformers + Mixture of Experts
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Outline

Programming abstractions for deep learning
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Deep Learning Ingredients
 Model and architecture

» Objective function and training techniques

« Regularization, normalization and initialization (coupled with modeling)
« Batch norm, dropout, Xavier

» Get good amount of data



Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)
Execution planner
Storage engine

Data Processing

Distributed Primitive(MapReduce)
Fault tolerance layer
Workload migration



Deep Learning Ingredients
 Model and architecture

» Objective function and training techniques

« Regularization, normalization and initialization (coupled with modeling)
« Batch norm, dropout, Xavier

» Get good amount of data

Discussion how can these
ingredients affect the system
design of ML frameworks



Computational Graph Abstraction

* Nodes represents the computation (operation)

« Edge represents the data dependency between operations

Computational Graph for a * b +3

:> mul ]7[ add-const ]

3
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Case Study of Computational

* In the next few slides, we will do a case study of a deep learning program
using TensorFlow v1 style API.

* Note that the most deep learning frameworks now use a different style, but
share the same mechanism under the hood

* Think about abstraction and implementation when going through these
examples
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Logistic Regression

Softmax

One Linear Layer

Input

exp(hy)

VT ABLMHPF o™
NN NN A TN

g ~ST O 0NID N
NNO Mg —a Y
ooNcWVMy AN
MdbINNN OV




Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

,_#_Cceate_themodeL _________________________ Forward COmpUtatlon
x = tf.placeholder(tf.float32, [None, 784]) : DEC|arati0n

W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W)) I

_____________ = e e e e ==

# Define Toss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
# Update rule
learning _rate = 0.5
W grad = tf.gradients(cross_entropy, [W])[@]
train_step = tf.assign(W, W - learning rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})
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Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

#
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
B e R O ettt ’

learning _rate = 0.5

W grad = tf.gradients(cross_entropy, [W])[@]

train_step = tf.assign(W, W - learning rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})

Loss function Declaration
P(label = k) = y.
10
L(y) =Y I(label = k)log(y;)

k=1



Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

X
W
y
# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
# Update rule

Automatic Differentiation:
" Wgrad - tf.gradients(cross_entropy, [Wl)[] j Next incoming topic

train_step = tf.assign(W, W - learning rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})
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Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

X
W
y
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
# Update rule
learning _rate = 0.5
__MWgrad - tf.gradients(cross_entropy, [WI)[e] . SGD update rule
train_step = tf.assign(W, W - learning rate * W_grad) h——””””’
B - = = e o ey
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})



Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul (x, W))

X
W
y
# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction indices=[1]))
# Update rule

learning _rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[9]

train_step = tf.assign(W, W - learning rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000): Real eXGCUtIOn ha ppenS

batch_xs, batch_ys = mnist.train.next_batch(100) r]EE'.EE'

_________________________________________________________________________



Computational Graph Construction by Step

tf.placeholder(tf.float32, [None, 784])
= tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

___________________________________________________
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Computational Graph Construction by Step

y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1]))

y ! cross_entropy

_____________________________________________________________




Computational Graph Construction by Step

W grad = tf.gradients(cross_entropy, [W])[©]

Automatic Differentiation, more details in

follow up lectures
cross_entropy
y_

W_grad | matmult- :}F{ ] [ ' ]
: transpose softmax-grad log-grad mul 1 / batch_size

e o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Y matmult softmax




Computational Graph Construction by Step

sess.run(train_step, feed dict={x: batch xs, y :batch ys})

cross_entropy
A

E 'W_grad matmult- ,
i [ m?l }T——————[ e s softmax-grad ]+{ log- grad mul 1 / batch_size

1 1
'learning rate |
1 1

assign

A

sub

A




Computational Graph Construction by Step

* What are the benefits of computational graph abstraction?
* What are possible implementation and optimizations on top of this

abstraction
cross_entropy
{ matmult )Ksoftmax T_ nean |

- _grad matmult- ]*{
[ m?l JZ——————[ transpose softmax-grad log- grad 1 / batch_size

learning rate

assign

sub




Imperative Computational Graph Construction

 TF1 style APl uses a define then run approach
 First construct the whole computational graph, then run the computation

* PyTorch and other frameworks uses a define and run approach
 constructs the computational graph on the fly, along side the computations

torch.Tensor([3])
torch.Tensor([2])

X -y

X
]

N <
Il
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Imperative Computational Graph Construction

 TF1 style APl uses a define then run approach
 First construct the whole computational graph, then run the computation

* PyTorch and other frameworks uses a define and run approach
 constructs the computational graph on the fly, along side the computations

X

y
Z =X -Y

torch.Tensor([3])
torch.Tensor([2])

[1]

sub ware ]—» loss

dhl }*———{ square-grad ]
[ X.grad }*/////[2] !

y.grad’s path is omitted

loss = square(z)

loss.backward()

print(x.grad)

46



TF1 vs PyTorch Style API

* Both leverages computational graph abstraction under the hood
* Define and run gives more flexibility to programmer

X = torch.Tensor([3])
y = torch.Tensor([2])
Z =X -y

print(z)

» Define then run still brings some benefits
« See the entire computational graph to do global optimization

 Active topic of research, hybrid approaches such as JIT compilation
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