15-442/15-642: Machine Learning Systems

Deep Learning and Programming
Abstraction

Spring 2026

Tiangi Chen and Zhihao Jia
Carnegie Mellon University

1/21/2026

Outline

Overview of deep learning

Programming abstractions for deep learning

Outline

Overview of deep learning

Elements of Machine Learning

 Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

* Loss function
How “well” are we doing for a given
set of parameters

* Training (optimization) method
A procedure to find a set of
parameters that minimizes the loss

teatureg

_ feature; E}' _

T = y = e
o [+exp (—u'f ,r,-)
feaurey,

Logistic regression model
n
L(w) =Y 1y;, ;) + Aw])?
i=1
Regularized loss function

w4+ w—nVyL(w)

Stochastic gradient descent

Deep Learning, Key ldeas

« Compositional multi-layer model

Layer 1 Layer 2 Prediction
e~
: . 1
= ** T e (ol
| _t=—"

« End to end training: learning parameters of all layers together

 NOTE: the other ingredients (loss and training) remains the same as other machine
learning methods

Understand Our Applications:
An Overview of Deep Learning Models

 Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks
 Mixture-of-Experts

ed In

N £\ 8 R
e X %, '7-,‘- "’, ’v ‘ -
- B T - %
SRR 1 e - >
3 : > V,’/’ E "
&

Segmentation Self-Driving Synthesis

Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel
>3<6\ j (-1x3)+(0x0)+(1x1)+
—T6 |2 (-2x2)+(0x6)+(2x2) +
(1x2)+(0x4)+(1x1) =-3
dkp. T
2 // B
L = == L=
2 == L1
| — ol | o]
Convolution filter] // =
(Sobel Gx) // //
Destination pixel // //
= _—
L] //
//

CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

: : Linearly
Low-level Mid-level High-level separable
features features features -
classifier

Tthi

] P = m | s

—

1}

[Zeiler and Fergus 2013] YGG-16 Conv1_1 VGG-16 Conv3_

Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks

10

Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks

11

Recurrent Neural Networks: Process Sequences

one to one one to many
i Pt ¢
! !

\

e.d., image captioning
Image -> sequence of words

12

Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt 1 !
f f i

e.g., action prediction
sequence of video frames -> action

13

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames

14

Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
B > internal state that is
Neural
updated as a sequence
is processed

Networks

T

inputsi] Arbitrary number of inputs

15

How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

+ Solution: unrolling RNNs (define maximum depth)

output, output, output, output,

input, input, input; input,

16

When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)

17

Understand Our Applications:
An Overview of Deep Learning Models

e Transformers

18

Inefficiency in RNNs?

» Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

|npu% input, input; input,

Attention: Enable Parallelism within a Sequence

 Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

Attention Layer 2
Attention Layer 1
vero 0 @ 0 0 0 B O

h, h, h

T

20

Attention: Enable Parallelism within a Sequence

 Idea: treat each position’s representation as a query to access and
incorporate information from a set of values

« Massively parallelizable: number of unparallelizable operations does not
Increase sequence length

We will learn attention and

Attention Layer2 2 transformers in depth later:

query

S o Self-attention
« Masked attention

[
Attention Layer 1
* Multi-head attention

vero 0| O 0| O [0l @ O
h, h, h] values

21

Understand Our Applications:
An Overview of Deep Learning Models

 Graph Neural Networks

22

Classification

GNNs: Neural Networks on Relational Data

Neural Networks

A
w;'
X
KL

o;o;o

N

(2
=

\‘" tput layer

hidden layer 1 hidden layer 2

£NEN

]
O
<

)

input layer

Classification g 3 Instance
+ Localization Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN A

R NE

Single object Multiple objects

Graph Neural Networks

Input . v Output

oz i

=] n
Lo - -
PR I |
- dt a. Jdi ’. S n ® Py ope.nlE () Freebase C‘° GeoNames
» ? g;. 2 _{__4 « i = ConceptNet — . o
o - [L ® ® ®
r) s n . Ak, . n KNOWLEDGE g
| i ® n- § - =D DBpedia OTATH
JL\ ﬁ ~ . I ‘ L . PROSPERA
l g > Q™ n Metaweb
< ‘N B 00 L 0000 T e T T e Knowle dge Vault
I's £ °+ "=

23

Graph Neural Network Architecture

« Combine graph propagation w/ neural network operations

O
m Input New

Representations Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations

24

Understand Our Applications:
An Overview of Deep Learning Models

 Mixture-of-Experts

25

Mixture-of-Experts

: make each expert focus on predicting the right answer for a
subset of cases

. (MoE layer)

)
.
.
.
.
.
.
.
.
.
.
.
.
.
: X

A A ~
G(x),| [G(X)pq

MoE MoE
layer layer Expert 1 Expert 3 b oo Expert n
A
| Gating
X]

Network

Switch Transformers = Transformers + Mixture of Experts

. v [TTTTT] v [TTT L]
. -, A A
‘ ’ ’ ‘[i |4
e’ < (gl Add + Normalize h
-
; Phd e / JemmToT ﬁ /)é‘ ________ N \
Add + Normalize] DI ERIEDIED PN 1) [Feve | [Fena || Feva | i
1 Sl .'\ e - '; 08
Switching FFN Layer } p=0.65 p=0.
f o
Add + Normalize I \

T 4 A A /

Self-Attention) :[Add + Normalize]|~‘-

f f f

X . Self-Attention
hRS A A

Y . \
AN Positional D Positional o)
N embedding Y embedding "%
Y
x1 [T 111 xo (T T

More Parameters

Outline

Programming abstractions for deep learning

28

Deep Learning Ingredients
 Model and architecture

» Objective function and training techniques

« Regularization, normalization and initialization (coupled with modeling)
« Batch norm, dropout, Xavier

» Get good amount of data

Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)
Execution planner
Storage engine

Data Processing

Distributed Primitive(MapReduce)
Fault tolerance layer
Workload migration

Deep Learning Ingredients
 Model and architecture

» Objective function and training techniques

« Regularization, normalization and initialization (coupled with modeling)
« Batch norm, dropout, Xavier

» Get good amount of data

Discussion how can these
ingredients affect the system
design of ML frameworks

Computational Graph Abstraction

* Nodes represents the computation (operation)

« Edge represents the data dependency between operations

Computational Graph for a * b +3

:> mul]7[add-const]

3

32

Case Study of Computational

* In the next few slides, we will do a case study of a deep learning program
using TensorFlow v1 style API.

* Note that the most deep learning frameworks now use a different style, but
share the same mechanism under the hood

* Think about abstraction and implementation when going through these
examples

33

Logistic Regression

Softmax

One Linear Layer

Input

exp(hy)

VT ABLMHPF o™
NN NN A TN

g ~ST O 0NID N
NNO Mg —a Y
ooNcWVMy AN
MdbINNN OV

Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

,_#_Cceate_themodeL _________________________ Forward COmpUtatlon
x = tf.placeholder(tf.float32, [None, 784]) : DEC|arati0n

W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W)) I

_____________ = e e e e ==

Define Toss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
Update rule
learning _rate = 0.5
W grad = tf.gradients(cross_entropy, [W])[@]
train_step = tf.assign(W, W - learning rate * W_grad)
Training Loop
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})

o

Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

Define loss and optimizer

#
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
B e R O ettt ’

learning _rate = 0.5

W grad = tf.gradients(cross_entropy, [W])[@]

train_step = tf.assign(W, W - learning rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})

Loss function Declaration
P(label = k) = y.
10
L(y) =Y I(label = k)log(y;)

k=1

Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

X
W
y
Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
Update rule

Automatic Differentiation:
" Wgrad - tf.gradients(cross_entropy, [Wl)[] j Next incoming topic

train_step = tf.assign(W, W - learning rate * W_grad)
Training Loop
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})

———

Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

X
W
y
Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_* tf.log(y), reduction indices=[1]))
Update rule
learning _rate = 0.5
__MWgrad - tf.gradients(cross_entropy, [WI)[e] . SGD update rule
train_step = tf.assign(W, W - learning rate * W_grad) h——””””’
B - = = e o ey
sess = tf.Session()
sess.run(tf.initialize_all variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed dict={x: batch_xs, y :batch_ys})

Logistic Regression in TF1-style AP

import tinyflow as tf

from tinyflow.datasets import get_mnist

Create the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul (x, W))

X
W
y
Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction indices=[1]))
Update rule

learning _rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[9]

train_step = tf.assign(W, W - learning rate * W_grad)

Training Loop

sess = tf.Session()

sess.run(tf.initialize_all variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000): Real eXGCUtIOn ha ppenS

batch_xs, batch_ys = mnist.train.next_batch(100) r]EE'.EE'

Computational Graph Construction by Step

tf.placeholder(tf.float32, [None, 784])
= tf.Variable(tf.zeros([784, 10]))
tf.nn.softmax(tf.matmul(x, W))

40

Computational Graph Construction by Step

y = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce mean(-tf.reduce sum(y_ * tf.log(y), reduction indices=[1]))

y ! cross_entropy

Computational Graph Construction by Step

W grad = tf.gradients(cross_entropy, [W])[©]

Automatic Differentiation, more details in

follow up lectures
cross_entropy
y_

W_grad | matmult- :}F{] [']
: transpose softmax-grad log-grad mul 1 / batch_size

e o o o e

Y matmult softmax

Computational Graph Construction by Step

sess.run(train_step, feed dict={x: batch xs, y :batch ys})

cross_entropy
A

E 'W_grad matmult- ,
i [m?l }T——————[e s softmax-grad]+{ log- grad mul 1 / batch_size

1 1
'learning rate |
1 1

assign

A

sub

A

Computational Graph Construction by Step

* What are the benefits of computational graph abstraction?
* What are possible implementation and optimizations on top of this

abstraction
cross_entropy
{ matmult)Ksoftmax T_ nean |

- _grad matmult-]*{
[m?l JZ——————[transpose softmax-grad log- grad 1 / batch_size

learning rate

assign

sub

Imperative Computational Graph Construction

 TF1 style APl uses a define then run approach
 First construct the whole computational graph, then run the computation

* PyTorch and other frameworks uses a define and run approach
 constructs the computational graph on the fly, along side the computations

torch.Tensor([3])
torch.Tensor([2])

X -y

X
]

N <
Il

45

Imperative Computational Graph Construction

 TF1 style APl uses a define then run approach
 First construct the whole computational graph, then run the computation

* PyTorch and other frameworks uses a define and run approach
 constructs the computational graph on the fly, along side the computations

X

y
Z =X -Y

torch.Tensor([3])
torch.Tensor([2])

[1]

sub ware]—» loss

dhl }*———{ square-grad]
[X.grad }*/////[2] !

y.grad’s path is omitted

loss = square(z)

loss.backward()

print(x.grad)

46

TF1 vs PyTorch Style API

* Both leverages computational graph abstraction under the hood
* Define and run gives more flexibility to programmer

X = torch.Tensor([3])
y = torch.Tensor([2])
Z =X -y

print(z)

» Define then run still brings some benefits
« See the entire computational graph to do global optimization

 Active topic of research, hybrid approaches such as JIT compilation

	Slide 1: 15-442/15-642: Machine Learning Systems Deep Learning and Programming Abstraction
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Elements of Machine Learning
	Slide 5: Deep Learning, Key Ideas
	Slide 6: Understand Our Applications: An Overview of Deep Learning Models
	Slide 7: CNNs are widely used in vision tasks
	Slide 8: Convolution
	Slide 9: CNNs
	Slide 10: Understand Our Applications: An Overview of Deep Learning Models
	Slide 11: Recurrent Neural Networks: Process Sequences
	Slide 12: Recurrent Neural Networks: Process Sequences
	Slide 13: Recurrent Neural Networks: Process Sequences
	Slide 14: Recurrent Neural Networks: Process Sequences
	Slide 15: Recurrent Neural Networks
	Slide 16: How to Represent RNNs in Computation Graphs
	Slide 17: When do we need RNNs?
	Slide 18: Understand Our Applications: An Overview of Deep Learning Models
	Slide 19: Inefficiency in RNNs?
	Slide 20: Attention: Enable Parallelism within a Sequence
	Slide 21: Attention: Enable Parallelism within a Sequence
	Slide 22: Understand Our Applications: An Overview of Deep Learning Models
	Slide 23: GNNs: Neural Networks on Relational Data
	Slide 24: Graph Neural Network Architecture
	Slide 25: Understand Our Applications: An Overview of Deep Learning Models
	Slide 26: Mixture-of-Experts
	Slide 27: Switch Transformers = Transformers + Mixture of Experts
	Slide 28: Outline
	Slide 29: Deep Learning Ingredients
	Slide 30: Application affects System Design
	Slide 31: Deep Learning Ingredients
	Slide 32: Computational Graph Abstraction
	Slide 33: Case Study of Computational
	Slide 34: Logistic Regression
	Slide 35: Logistic Regression in TF1-style API
	Slide 36: Logistic Regression in TF1-style API
	Slide 37: Logistic Regression in TF1-style API
	Slide 38: Logistic Regression in TF1-style API
	Slide 39: Logistic Regression in TF1-style API
	Slide 40: Computational Graph Construction by Step
	Slide 41: Computational Graph Construction by Step
	Slide 42: Computational Graph Construction by Step
	Slide 43: Computational Graph Construction by Step
	Slide 44: Computational Graph Construction by Step
	Slide 45: Imperative Computational Graph Construction
	Slide 46: Imperative Computational Graph Construction
	Slide 47: TF1 vs PyTorch Style API

