15-442/15-642: Machine Learning Systems

Introduction to
Machine Learning Systems

Spring 2026

Tiangi Chen and Zhihao Jia
Carnegie Mellon University

1/14/2026

An Overview of Machine learning Systems

[=

8

: ¢ 8 Ll i, | ﬂgl
(880|800 808\ MLM d I Nelganalal * gl * less
T odel ey ¥ i

» ” w’ N L L™

Automatic Differentiation a

Graph-Level Optimization

Parallelization — ML Systems

Kernel Generation

Memory Optimization

T O Qe

Layer 1: Automatic Differentiation

v ML Model Lrwss L L m

‘ Automatically construct
Automatic Differentiation backward computation graph

Graph-Level Optimization

Parallelization Forward
computation
Kernel Generation graph
Memory Optimization
Backward
computation
graph

Layer 2: Graph-Level Optimizations

z . LN I AR

|88 [-800- | -808- Holeons ol ¥ laf ¥
% as0s ¥ s000e ¥ ann0e/ ode W UL LY L

” " (L P

Automatic Differentiation
Graph-Level Optimization
Parallelization

Kernel Generation

Memory Optimization

Recap: DNNs as Computation Graphs

 Collection of simple trainable mathematical units that work together to
solve complicated tasks

A tensor (i.e., n-dimensional array)
o« P

A tensor algebra operator
(e.g., convolution, matrix mul)

x Q S
v U <
o 9 o
A —
L~

o

w) n
S25982¢
=388
X857 o

)

0]

q

(0]

Q.

Graph-Level Optimizations

Fuse conv + batchnorm

convilxl

------ l
|
|
|
|
|
| |
: | batchnorm |:
|

e e 4

v =» N
batchnorm

| relu |

Input Computation Potential graph

;) Optimized Computation
Graph transformations Graph

Example: Fusing Convolution and Batch Normalization
o

BatchNorm Z(n,c,h,w) =Y(n,c,h,w) * R(c) + P(c)

A
} Conv2D E Y(n,chw) = <z X(n,d,h+uw+v)«*W(cd, u, v)) + B(n,c,h,w)
duyv

W, B, R, P are constant pre-trained weights

Fusing Conv and BatchNorm

o

Z(n,c,h,w) = (2 X(n,d,h+uw+v) W, (c,d,u,v)) + B, (n,c,h,w)

duv
?

BatchNorm

Conv2D

*

Conv2D

Wy(n,c,h,w) = W(n,c,h,w) = R(c)

B,(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)

namespace tensorflow {
namespace graph_transforms {

// Converts Conv2D or MatMul ops followed by column-wise Muls into equivalent
// ops with the Mul baked into the convolution weights, to save computation
// during inference.
Status FoldBatchNorms(const GraphDef& input_graph_def,
const TransformFuncContext& context,
GraphDef* output_graph_def) {
GraphDef replaced_graph_def;
TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes(

Current Rule-based Graph Optimizations #7777

// conv_node

{"+"}, // input_node
{"Const"}, // weights_node

},

{"Const"}, // mul_values_node

, // clang-format on
1(const NodeMatch& match, const std::set<string>& input_nodes,
const std::set<string>& output_nodes,
std: :vector<NodeDef>% new_nodes) {
// Find all the nodes we expect in the subgraph.
const NodeDef& mul_node = match.node;
const NodeDef& conv_node = match.inputs[0].node;
const NodeDef& input_node = match.inputs[0@].inputs[0].node;
const NodeDef& weights_node = match.inputs[@].inputs[1].node;
const NodeDef& mul_values_node = match.inputs[1].node;

Fu Se conv + rel u // Check that nodes that we use are not used somewhere else.

for (const auto& node : {conv_node, weights_node, mul_values_node}) {
if (output_nodes.count(node.name())) {
// Return original nodes.
new_nod. insert(new_nod nd(),
{mul_node, conv_node, input_node, weights_node,
mul_values_node});
return Status::0K();

b
[

i

Tensor weights = GetNodeTensorAttr(weights_node, "value");
Tensor mul_values = GetNodeTensorAttr(mul_values_node, "value");

TensorFlow currently

// Make sure all the inputs really are vectors, with as many entries as
// there are columns in the weights.

Fuse conv + e s
includes ~200 rules batch normalization TR oy

else if (conv_node.op() "DepthwiseConv2dNative") {
(~53,000 LOC)

~

weights_cols =

w%ights.shape().dim_size(Z) * weights.shape().dim_size(3);
else
weights_cols = weights.shape().dim_size(1);

-~

if ((mul_values.shape().dims() !=1) ||
(mul_values.shape().dim_size (@) != weights_cols)) {
return errors::InvalidArgument(
"Mul constant input to batch norm has bad shape: ",
mul_values.shape().DebugString());
¥

L]
Fuse mu Itl con // Multiply the original weights by the scale vector.

auto weights_vector = weights.flat<float>();
Tensor scaled_weights(DT_FLOAT, weights.shape());
auto scaled_weights_vector = scaled_weights.flat<float>();
for (int64 row = @; row < weights_vector.dimension(@); ++row) {
scaled_weights_vector(row) =
weights_vector(row)
mul_values.flat<float>()(row % weights_cols);

i

// Construct the new nodes

NodeDef scaled_weights_node;

H E R scaled_weights_node.set_op("Const");
scaled_weights_node.set_name(weights_node.name());

SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node);
SetNodeTensorAttr<float>("value", scaled_weights, &scaled_weights_node);
new_nodes—>push_back(scaled_weights_node);

new_nodes—>push_back(input_node);
NodeDef new_conv_node;
new_conv_node = conv_node;
new_conv_node.set_name(mul_node.name());
new_nodes—>push_back(new_conv_node);
return Status::0K();

{i, &replaced_graph_def));

*output_graph_def = replaced_graph_def;
return Status::0K();

- L]
R u Ie -bas e d O ptl m Ize r REGISTER_GRAPH_TRANSFORM("fold_batch_norms", FoldBatchNorms);

} // namespace graph_transforms
} // namespace tensorflow

Limitations of Rule-based Optimizations

Robustness

Experts’ heuristics do not
apply to all models/hardware

Code (@ lIssues 250 Pull requests 11 Wiki Insights

Horovod with XLA is slower than without XLA (Tensorflow [Newissue |

1.12) #.

[GAelLIT-L W LiweiPeng opened this issue on Dec 19, 2018 - 2 comments

E LiweiPeng commented on Dec 19, 2018

| have a distributed nmt model (Transformer-based, AdamOptimizer) using Horovod (0.15.1). When |
turned on XLA under tensorflow 1.12, the training speed is about 20% slower instead of faster.

This result is sampled after training 1.5-hours and 4000 steps. | am using 4 V100 GPUs for the training.

Because my current software is tightly coupled with Horovod, | couldn't test whether this is Horovod
related or not.

Does anyone have experience on whether this is expected?

O y2y tgaddair added the [ETTR0L] label on Dec 19, 2018

Assignees

No one assigned

Labels

Milestone

No milestone

Natifications

) Subscribe

Veufra nat racaivina natifinatinne

When | turned on XLA (TensorFlow’s graph optimizer),

the training speed is about 20% slower

iy,

stackoverflow

PUBLIC

@ Stack Overflow
Tags
Users

Jobs

Teams =&
Q&A for work

Tensorflow XLA makes it slower?

| am writing a very simple tensorflow program with XLA enabled. Basically it's something like:

import tensorflow as tf

def ChainSoftMax(x, n)
tensor = tf.nn.softmax(x)
for i in range(n-1):
tensor = tf.nn.softmax(tensor)
return tensor

config = tf.ConfigProto()
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

input = tf.placeholder(tf.float32, [1000])
feed = np.random.rand(1000).astype('float32"')

with tf.Session(config=config) as sess:
res = sess.run(ChainSoftMax(input, 2000), feed_dict={input: feed})

Basically the idea is to see whether XLA can fuse the chain of softmax together to avoid multiple
kernel launches. With XLA on, the above program is almost 2x slower than that without XLA on a
machine with a GPU card. In my gpu profile, | saw XLA produces lots of kernels named as

" reduce_xxx "and " fusion_xxx " which seem to overwhelm the overall runtime. Any one know what
happened here?

With XLA, my program is almost 2x slower than
without XLA

11

Limitations of Rule-based Optimizations

Robustness Scalability

Experts’ heuristics do not New operators and graph
apply to all models/hardware structures require more rules

TensorFlow currently uses ~4K
LOC to optimize convolution

12

Limitations of Rule-based Optimizations

Robustness Scalability

Experts’ heuristics do not New operators and graph
apply to all models/hardware structures require more rules

Performance

Miss subtle optimizations for
specific models/hardware

13

Motivating Example (ResNet*)

D 1 1
Y(nc hw)= 77 7X(n,d,h+u,w+v) * W(c,d,u,v)

(d u=1v=1

Conv3x3
+ Relu

v

Conv3x3

D
Y(n,c hw) =7 X(n,d,h+uw+v)*W(cd uv)
d

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

14

Motivating Example (ResNet*)

4

d u=1v=1
———- X

Conv3x3
+ Relu

______ 1 v

Conv3x3

Conv3x3
+ Relu

v

Conv3x3

Enlarge
convs

(Decrease performance)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

3 3
Y(n,c,hw)= yy 7X(n,d,h+u,w-|—v) * W(c,d,u,v)

15

D 3 3
Y(n,c,hw) = 7 X(n,d,h +uw+v)«W'icd uv)
d u=1v=1

Conv3x3 Conv3x3

+ Relu

Conv3x3
+ Relu

v

Conv3x3

Enlarge
convs

(Decrease performance)

* Kaiming He. et al. Deep Residual Learning for Image Recognition, 2015

16

Motivating Example (ResNet*)

Conv3x3 I I 'l conv3x3 : I Conv3x3 | Conv3x3 Conv3x3
+ Relu : : : + Relu I : * Relu : + Relu * Relu
Y A l r - -: : + : Cor‘:v3x3
Conv3x3 : Conv3x3 1 + Relu
- |

Enlarge Fuse
convs conv & add

(Decrease performance)

The final graph is 30% faster on V100 GPU but 10% slower on K80 GPU.

* Kaim

17

Graph Optimizations

Graph Hardware
Operators Architectures Backends

Infeasible to manually design graph optimizations
for all cases

18

Automated Graph Optimizations

O =)

a Graph Graph Graph
o =) Optimization = Optimization S Y Optimizer
Generator

—/ @ - &J Verifier
Mathematical

Properties of ML Candidate 4+ Verified
Optimizations Optimizations

19

Layer 3: Parallelizing ML Computations

= & ae <8 <8
Y - 0 [[
[-s0e-\ [-808-\ _|-888- Mol gaaalal ¥ 1ol
% oe00e ¥ seone ¥ aasee’ ode LU LY
” " (L P

Automatic Differentiation
Graph-Level Optimization
Parallelization

Kernel Generation

Memory Optimization

20

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs "t Model prediction

Convolution

ooooooo
CCCCCC
ooooooo

21

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs "t Model prediction

Convolution

ooooooo
CCCCCC
ooooooo

22

Recap: Stochastic Gradient Descent (SGD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

: run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

S =

w; = w; — yVL(w;) = w; —

i VL;(w;)
=

23

How can we parallelize ML training?

n
)4
w; == w; — yVL(w;) = w; — EE VL;(w;)
=1

24

Data Parallelism

- Gradients
Aggregation

ML Model

Training Dataset

w; == w; — YVL(w;) = w; —

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients

each batch on a GPU across GPUs N

Model Parallelism

« Split a model into multiple subgraphs and assign them to different devices

Model Transfer
! intermediate
Parallelism results
| between
devices

Training Dataset

30

An Overview of Deep Learning Systems

0 <8
A | .8

}) & 2N o
| o leteE88 -8 |
w ML Model swns v |
' (L ML
‘ 0 0

Automatic Differentiation

Graph-Level Optimization
Parallelization
Kernel Generation

Memory Optimization

32

Kernel Generation: How to find performant programs for
each operator?

/
conv3x3 Matmul : C = tvm. compute((m, n) ,

L J ' lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
conv3x3 \

m Search Space of Possible Program Optimizations

Low-level Program Variants

inp_buffer AL[8][8], BLI[8][8] for yo in range(128):

acc_buffer CL[8][8] for y in range(1024):

for xo in range(128): .
for yo in range(128): - C[yo*S:yo*B?—S] [xo*8:x0%8+8] = @ for x in range(1024):
f°"d>1<° ;'.‘1{‘3”93(%53' for ko in range(128): Clyl[x]l =@
¥0ral.<olin_i§;ge(128): for yi inlrange(B): for k in range(1024):
vdla.dma_copy2d (AL, Alko#8:ko*8+8] [yo*8:y0*8+8]1) for xi :!.n.range(B): ClylIx] += Alkl[yl * BI[k] [x]
vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0*8:x0%8+8]) for ki in range(8):

vdla. fused_gemm8x8_add(CL, AL, BL) Clyo*8+yi] [xo*8+xi] += . _
vdla.dma_copy2d(C[yox8:yox8+8, xo%8: xo*8+8], CL) Alkox8+ki] [yo*8+yi] * B[kox8+ki] [xo*8+xi]

Existing Approach: Engineer Optimized Tensor Programs

« Hardware vendors provide operator libraries manually developed by
software/hardware engineers

« cuDNN, cuBLAS, cuRAND, cuSPARSE for GPUs
« cudnnConvolutionForward() for convolution
* cublasSgemm() for matrix multiplication

« Cannot provide immediate support for new operators
* Increasing complexity of hardware -> hand-written kernels are suboptimal

34

Automated Code Generation

conv3x3 Matmul
4
conv3x3

Automated search for performant el . 1_'hr<?ad Cach.e
_ Transformations Bindings Locality
programs:

v" Immediate support for new operators .
v" Better performance than hand-written Thread o Latency ,' |
: Tensorization o cer |

kernels Cooperation Hiding T

' Hardware

— o o o . . o T e e Eme e Eme Eme mme mme mme mme e mme mme e e e mme mme mmm mme mme mme mme e e mme e e e mme mme e e

* Slides from Tiangi Chen

35

1

An Overview of Deep Learning Systems

0 g 0.8 4.8

o 500 000|800 Helagealal = lgl ™ lggs
CrPPILTTTTILITTY odel o 0
- - - - - Dm .‘ L '

8 8 8] W/ "

Automatic Differentiation

Graph-Level Optimization
Parallelization / Distributed Training
Code Optimization

Memory Optimization

36

GPU Memory is the Bottleneck in DNN Training

* The biggest model we can train is bounded by GPU memory
« Larger models often achieve better predictive performance
« Extremely critical for modern accelerators with limited on-chip memory

Forward pass Need to keep all intermediate results alive

90 0 0 0 0 0 009000

Backward pass

37

Upcoming Lectures

]] L 3 prrag 08-:‘ tﬁgl
(880 (808|808~ MLM d I | | o -
LT [Proery L Prery odel ey PN i
PN A e A AN 7
a8 8

Automatic Differentiation

Graph-Level Optimization

Parallelization / Distributed Training

Code Optimization

Memory Optimization

44

	Slide 1: 15-442/15-642: Machine Learning Systems Introduction to Machine Learning Systems
	Slide 3: An Overview of Machine learning Systems
	Slide 4: Layer 1: Automatic Differentiation
	Slide 5: Layer 2: Graph-Level Optimizations
	Slide 6: Recap: DNNs as Computation Graphs
	Slide 7: Graph-Level Optimizations
	Slide 8: Example: Fusing Convolution and Batch Normalization
	Slide 9: Fusing Conv and BatchNorm
	Slide 10: Current Rule-based Graph Optimizations
	Slide 11: Limitations of Rule-based Optimizations
	Slide 12: Limitations of Rule-based Optimizations
	Slide 13: Limitations of Rule-based Optimizations
	Slide 14: Motivating Example (ResNet*)
	Slide 15: Motivating Example (ResNet*)
	Slide 16
	Slide 17: Motivating Example (ResNet*)
	Slide 18
	Slide 19: Automated Graph Optimizations
	Slide 20: Layer 3: Parallelizing ML Computations
	Slide 21: Recap: Stochastic Gradient Descent (SGD)
	Slide 22: Recap: Stochastic Gradient Descent (SGD)
	Slide 23: Recap: Stochastic Gradient Descent (SGD)
	Slide 24: How can we parallelize ML training?
	Slide 25: Data Parallelism
	Slide 30: Model Parallelism
	Slide 32: An Overview of Deep Learning Systems
	Slide 33: Kernel Generation: How to find performant programs for each operator?
	Slide 34: Existing Approach: Engineer Optimized Tensor Programs
	Slide 35: Automated Code Generation
	Slide 36: An Overview of Deep Learning Systems
	Slide 37: GPU Memory is the Bottleneck in DNN Training
	Slide 44: Upcoming Lectures

