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Overview of deep learning

Programming abstractions for deep learning
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Elements of Machine Learning

• Model(hypothesis) class 
A parameterized function that describes 
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given 
set of parameters

• Training (optimization) method
A procedure to find a set of 
parameters that minimizes the loss
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Logistic regression model

Regularized loss function

Stochastic gradient descent
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• Compositional multi-layer model

• End to end training: learning parameters of all layers together
• NOTE: the other ingredients (loss and training) remains the same as other machine 

learning methods

Deep Learning, Key Ideas

Layer 1 Layer 2 Prediction
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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CNNs are widely used in vision tasks
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Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Convolution

• Convolve the filter with the image: slide over the image spatially and 
compute dot products
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CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

9[Zeiler and Fergus 2013]
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks: vision tasks
• Recurrent Neural Networks
• Transformer
• Graph Neural Networks
• Mixture-of-Experts
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Recurrent Neural Networks: Process Sequences
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Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences
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e.g., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences
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e.g., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences
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Video captioning: sequence of 
video frames -> sequence of words
Machine translation

Video classification 
on frames
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Recurrent Neural Networks
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outputs[i]

Recurrent 
Neural 

Networks

inputs[i]

Key idea: RNNs have an 
internal state that is 
updated as a sequence 
is processed

Arbitrary number of outputs

Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

• Computation graphs must be direct acyclic graphs (DAGs) but RNNs have 
self loops

• Solution: unrolling RNNs (define maximum depth)
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When do we need RNNs?

• RNNs are designed to process sequences (texts, videos)
• RNNs are extremely useful when you want your model to have internal 

states when a sequence is processed
• Commonly used in reinforcement learning (RL)
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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Inefficiency in RNNs?

• Problem: lack of parallelizability. Both forward and backward passes have 
O(sequence length) unparallelizable operators

• A state cannot be computed before all previous states have been 
computed

• Inhibits training on very long sequences
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Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

20

Layer 0

Attention Layer 1

Attention Layer 2
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Attention: Enable Parallelism within a Sequence

• Idea: treat each position’s representation as a query to access and 
incorporate information from a set of values

• Massively parallelizable: number of unparallelizable operations does not 
increase sequence length

21

Layer 0

Attention Layer 1

Attention Layer 2
We will learn attention and 
transformers in depth later:
• Self-attention
• Masked attention
• Multi-head attention

values

query
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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GNNs: Neural Networks on Relational Data

23

Neural Networks Graph Neural Networks
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A

DNN Operations

Aggregation
(sum, LSTM, …)

Neighbor Aggregation

Graph Neural Network Architecture

• Combine graph propagation w/ neural network operations

24

B

A

DC

Target vertex

Neighbors

Input
Representations

New
Representations
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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Mixture-of-Experts

• Key idea: make each expert focus on predicting the right answer for a 
subset of cases

26
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Switch Transformers = Transformers + Mixture of Experts
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Outline

Overview of deep learning

Programming abstractions for deep learning
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Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data
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Application affects System Design

Application

System Design

Data Management

Declarative language(SQL)
Execution planner
Storage engine

Data Processing

Distributed Primitive(MapReduce)
Fault tolerance layer
Workload migration 
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Deep Learning Ingredients

• Model and architecture

• Objective function and training techniques

• Regularization, normalization and initialization (coupled with modeling)
• Batch norm, dropout, Xavier

• Get good amount of data

Discussion how can these 
ingredients affect the system 
design of ML frameworks 
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Computational Graph Abstraction

• Nodes represents the computation (operation)

• Edge represents the data dependency between operations

32

a

b
mul add-const

3

Computational Graph for   a * b +3 
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Case Study of Computational

• In the next few slides, we will do a case study of a deep learning program 
using TensorFlow v1 style API.

• Note that the most deep learning frameworks now use a different style, but 
share the same mechanism under the hood

• Think about abstraction and implementation when going through these 
examples

33
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Logistic Regression

Input One Linear Layer Softmax
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Forward Computation 
Declaration

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Loss function Declaration

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Automatic Differentiation: 
Next incoming topic

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

SGD update rule

Logistic Regression in TF1-style API
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import tinyflow as tf

from tinyflow.datasets import get_mnist

# Create the model

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

# Define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Update rule

learning_rate = 0.5

W_grad = tf.gradients(cross_entropy, [W])[0]

train_step = tf.assign(W, W - learning_rate * W_grad)

# Training Loop

sess = tf.Session()

sess.run(tf.initialize_all_variables())

mnist = get_mnist(flatten=True, onehot=True)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Real execution happens 
here!

Logistic Regression in TF1-style API
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Computational Graph Construction by Step

40

W

x
matmult softmax

x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

y = tf.nn.softmax(tf.matmul(x, W))

y
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W

x
matmult softmax log

y_

mul mean
y cross_entropy

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Computational Graph Construction by Step
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W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad

y cross_entropy

W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in 
follow up lectures 

Computational Graph Construction by Step
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W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

Computational Graph Construction by Step

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
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W

x
matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

• What are the benefits of computational graph abstraction?
• What are possible implementation and optimizations on top of this 

abstraction

Computational Graph Construction by Step
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Imperative Computational Graph Construction

• TF1 style API uses a define then run approach
• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

45

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y
x

y

sub

[3]

[2]

[1]
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Imperative Computational Graph Construction

• TF1 style API uses a define then run approach
• First construct the whole computational graph, then run the computation

• PyTorch and other frameworks uses a define and run approach
• constructs the computational graph on the fly, along side the computations

46

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

loss = square(z)

loss.backward()

print(x.grad)

x

y

sub

[3]

[2] square

[1] [1]

square-grad

[2]

mul

x.grad
[2]

loss

y.grad’s path is omitted
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• Both leverages computational graph abstraction under the hood
• Define and run gives more flexibility to programmer

• Define then run still brings some benefits
• See the entire computational graph to do global optimization

• Active topic of research, hybrid approaches such as JIT compilation

x = torch.Tensor([3])

y = torch.Tensor([2])

z = x - y

print(z)

TF1 vs PyTorch Style API


