15-442/15-642: Machine Learning Systems
Automatic Differentiation
Spring 2026

Tiangi Chen and Zhihao Jia
Carnegie Mellon University

1/26/2026

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

Outline

General introduction to different differentiation methods

Recap: Elements of Machine Learning

 Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

* Loss function
How “well” are we doing for a given
set of parameters

* Training (optimization) method
A procedure to find a set of
parameters that minimizes the loss

Computing the loss function gradient with respect
to hypothesis class parameters is the most
common operation in machine learning

teatureg]
_ feature; E}' _
T = y = e
o [+exp (—u'f ,r,-)
feaurey,

Logistic regression model
1
L(w) = Ui, G;) + Aw|]’
i=1

Regularized loss function

Stochastic gradient descent

Numerical Differentiation

Directly compute the partial gradient by definition
0f(0) _ . f(6+ee)—f(6)
= 11m

09,: €—0 €

A more numerically accurate way to approximate the gradient

0f(6) _ £(6 +ee)) — £(8 —een)

2
09i 2€ T O(E)

Suffer from numerical error, less efficient to compute

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement
of an automatic differentiation algorithm in unit test cases

£(O +€8) — F(8 — €5)

2
P + 0(€e“)

6"Vef(0) =

Pick § from unit ball, check the above invariance.

Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

0/ (0)+9(®)) _ 9£(6)

20g(0) a(f(6)g(8)) of(6) 20g(0) f(g(8)) _ 0f(g(8)) 0g(0)
90 90 90 90 =8(0) 90 +1(6)

00 26 ag(®) 08

Naively do so can result in wasted computations

" 9
f(e)=L_1[ei ’;Ti=1_[e,-

J#k

Example:

Cost n(n — 2) multiplies to compute all partial gradients

Recap: Computational Graph

y = f(xq,x,) = In(x;) + x;x, — sinx,

Forward evaluation trace

v1=X1=2

v, =X, =5
y v3 =Ilnv; =1n2 = 0.693
v, =v1 X vy, =10
Vs = sinv, = sin5 = —0.959

Vg = V3 + v, = 10.693
v, = Vg — Vs = 10.693 + 0.959 = 11.652
y =v, = 11.652

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

Example based on A. G. Baydin, B. A. Pearimutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018

Forward Mode Automatic Differentiation (AD)

y = f(xq,x5) = In(x;) + x;x, — sinx,

.. Oy
Define v; = o7
y We can then compute the v; iteratively in the forward

topological order of the computational graph

Forward evaluation trace Forward AD trace
V=X =2 v =1
v, =X, =5 v, =0
v3 =Inv; =In2 = 0.693 V3 = v;/v; = 0.5
v, =1, X v, =10 VUp =VU, + U, =1X54+0%X2=5
Vs = sinv, = sin5 = —0.959 Vs = V08V, =0 X cos5=0
Ve = V3 + v, = 10.693 Vg = V3 + 1V, =0.5+5 =055
vy, = Vg — Vg = 10.693 + 0.959 = 11.652 V; = Vg —VUs =55—-0=055

y = v, = 11.652

9 .
Now we have % = v, = 5.5
1

Limitations of Forward Mode AD

 For f:R" - R¥, we need n forward AD passes to get the
gradient with respect to each input.

* We mostly care about the cases where k = 1 and large n .

* In order to resolve the problem efficiently, we need to use
another kind of AD.

10

Outline

Reverse mode automatic differentiation

11

Reverse Mode Automatic Differentiation(AD)

: PR
y = f(x1,x,) = In(x;) + x,x, — sinx, Define adjoint v; = a—i/,

l

We can then compute the v; iteratively in the reverse
topological order of the computational graph

y
Reverse AD evaluation trace
0y
7 av7 B
. __0v; __
6=U7a_v6= 7><1=1
dv
T =T =T x (-1 = -1
5
= = = — _6176 -
v3 =Inv; =1In2 = 0.693 P =Tes t=Tx1=1
Uy =1 X Uy, =10 P
. . — R 6 —
Vs = sinv, = sin5 = —0.959 3= Vo gy, = ex1=1
v6 = v3 + Vy = 10693 _ _0175 0174 _ _
5 = VUg—— = Vg XCOSV, + Vv, XV =—0.284+2 =1.716

by = vy — v = 10.693 + 0.959 = 11.652 v, 7o e
y = v; = 11.652 T = T2 4 T2 =, Xy T3 =5+ =55

12

Derivation for the Multiple Pathway Case

v, is being used in multiple pathways (v, and v3)

y
y can be written in the form of ¥ = f(v3,V3)
— _ 0y _0f(wpv3) 0vy | 0f(Vp,v3) Ovz _ —0vp , — 0v3
vl B 6171 B 6172 6171 + 6123 6171 - 72 V1 * 03 6171
: : . _ _ aUj : . .
Define partial adjoint v;5; = v; a_vl for each input output node pair i and j
jeEnext(i)

We can compute partial adjoints separately then sum them together

Reverse AD Algorithm

def gradient(out):

Dictionary that records a list of

node_to_grad = {out: «f1}7}

for i in reverse_topo _order(out):

partial adjoints of each node

V= ¥,;7;5; = sum(node_to_grad[i]) . SUM up partialadjoints

for k € inputs(i):
— avi

compute vy_,; = v; o
k

append 7v,_,; to node_to_grad[k

return adjoint of input v,y

/ “Propagates” partial adjoint to its input
]

14

Reverse Mode AD by Extending Computational Graph

def gradient(out):
node_to grad = {out: [1]}

for i in reverse topo_order(out): @
U; = 2V, = sum(node_to_grad[i])

for k € inputs(i):

S — avi
compute Vj_,;

! avk

+
append v_,; to node_to_grad[k] @
return adjoint of input v,y

exp

Our previous examples compute adjoint values directly by hand.
How can we construct a computational graph that calculates the adjoint values?

15

Reverse mode AD by extending computational graph

def gradient(out):
node_to grad = {out: [1]}

for i in reverse topo_order(out): @
» U; = X;Vi; = sum(node_to_grad[i])

for k € inputs(i):
0y exp
compute Uy = ;-
k

— +
append v_,; to node_to_grad[k] @
return adjoint of input v,y

i =4
node_to _grad: { Q

id
4: [7y]
}

NOTE: id is identity function

16

Reverse Mode AD by Extending Computational Graph

def gradient(out):

node_to grad = {out: [1]}

for i in reverse topo_order(out):
U; = 2V, = sum(node_to_grad[i])
for k € inputs(i):
compute V,_,; = V; 9vi
- o dvg
append v_,; to node_to_grad[k]
return adjoint of input v,

.)
I =4
node_to _grad: {
2: [Vy54]
3: [v5]
4: [v,]
; |

NOTE: id is identity function

Reverse Mode AD by Extending Computational Graph

def gradient(out):

node_to grad = {out: [1]}

for i in reverse topo_order(out):
U; = 2V, = sum(node_to_grad[i])
for k € inputs(i):
compute V,_,; = V; 9vi
- o dvg
append v_,; to node_to_grad[k]
return adjoint of input v,

F .
i=3
node_to _grad: {
2: [V354, V23]
3: [v5]
4: [v4]
’ |

NOTE: id is identity function

Reverse Mode AD by Extending Computational Graph

def gradient(out):

node_to grad = {out: [1]}

for i in reverse topo_order(out):
»ﬁi = Zj V;-; = sum(node_to_grad[i])
for k € inputs(i):
S — avi
compute v, _;

=V, —
avk
append v_,; to node_to_grad[k]

return adjoint of input v,y

Ti=:2
node_to _grad: {

2: [Vy54,Vp53]
3: [v5]
4: [4]

|3

NOTE: id is identity function

19

Reverse Mode AD by Extending Computational Graph

def gradient(out):

node_to grad = {out: [1]}

for i in reverse topo_order(out):
U; = 2V, = sum(node_to_grad[i])
for k € inputs(i):
compute V,_,; = V; 9vi
- o dvg
append v_,; to node_to_grad[k]
return adjoint of input v,

Yi=2
node_to _grad: {
1: [vq]
2: [Vy54, V23]
3: [vs]
4: [v4]
)

NOTE: id is identity function

20

Reverse Mode AD vs Backprop

Backprop

o (P |
YN

O
T

Run backward operations the same forward graph
Used in first generation deep learning
frameworks (caffe, cuda-convnet)

Reverse mode AD by
extending computational graph

Construct separate graph nodes for adjoints
Used by modern deep learning frameworks

21

Reverse mode AD on Tensors

matrix matmul Scalar output

(O—& @ v

Forward evaluation trace

Zij = EXikaj
K

v =f(Z)
Forward matrix form

Z =XW
v=1(2)

Define adjoint for tensor values Z =

Reverse evaluation in scalar form

X

u E :
= 7 W,
ik — aXl . L,j k]
Reverse matrix form

X=ZwrT

6Z1,1

ay

1 0Zm1

aZ]_In
ay
aZm,n_

22

Reverse AD Algorithm

def gradient(out):

Dictionary that records a list of

node_to_grad = {out: «f1}7}

for i in reverse_topo _order(out):

partial adjoints of each node

V= ¥,;7;5; = sum(node_to_grad[i]) . SUM up partialadjoints

for k € inputs(i):
— avi

compute v,_,; = v; F.
k

append 7v,_,; to node_to_grad[k

return adjoint of input v,y

/ “Propagates” partial adjoint to its input
]

23

Discussions

What are the pros/cons of backprop and reverse mode AD

24

Handling Gradient of Gradient

* The result of reverse mode AD is still a computational graph

» We can extend that graph further by composing more operations and run
reverse mode AD again on the gradient

* Part of homework 1

25

Reverse Mode AD on Data Structures

lookup(“cat”) f

Q a y Define adjoint data structure
J [”.ﬂ ¢ ”,Q
d ={“cat Das? dog ’61}

Forward evaluation trace Reverse evaluation

d = {“cat”: a,, “dog”: a;} p =95

b=d [“cat”] - 9
d ={cat”: b }

v = f(b) {

» Key take away: Define “adjoint value” usually in the same data type as the forward value and
adjoint propagation rule. Then the sample algorithm works.

* Do not need to support the general form in our framework, but we may support “tuple values”

	Slide 1: 15-442/15-642: Machine Learning Systems Automatic Differentiation
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Recap: Elements of Machine Learning
	Slide 5: Numerical Differentiation
	Slide 6: Numerical Gradient Checking
	Slide 7: Symbolic Differentiation
	Slide 8: Recap: Computational Graph
	Slide 9: Forward Mode Automatic Differentiation (AD)
	Slide 10: Limitations of Forward Mode AD
	Slide 11: Outline
	Slide 12: Reverse Mode Automatic Differentiation(AD)
	Slide 13: Derivation for the Multiple Pathway Case
	Slide 14: Reverse AD Algorithm
	Slide 15: Reverse Mode AD by Extending Computational Graph
	Slide 16: Reverse mode AD by extending computational graph
	Slide 17: Reverse Mode AD by Extending Computational Graph
	Slide 18: Reverse Mode AD by Extending Computational Graph
	Slide 19: Reverse Mode AD by Extending Computational Graph
	Slide 20: Reverse Mode AD by Extending Computational Graph
	Slide 21: Reverse Mode AD vs Backprop
	Slide 22
	Slide 23: Reverse AD Algorithm
	Slide 24: Discussions
	Slide 25: Handling Gradient of Gradient
	Slide 26: Reverse Mode AD on Data Structures

