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Recap: Elements of Machine Learning

• Model(hypothesis) class 
A parameterized function that describes 
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given 
set of parameters

• Training (optimization) method

A procedure to find a set of 
parameters that minimizes the loss

4

Logistic regression model

Regularized loss function

Stochastic gradient descentComputing the loss function gradient with respect 

to hypothesis class parameters is the most 

common operation in machine learning
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Numerical Differentiation

Directly compute the partial gradient by definition

A more numerically accurate way to approximate the gradient

Suffer from numerical error, less efficient to compute

5

𝜕𝑓 𝜃

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃) 

𝜖

𝜕𝑓 𝜃

𝜕𝜃𝑖
=

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃 − 𝜖𝑒𝑖) 

2𝜖
+ 𝑜(𝜖2)
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Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement 
of an automatic differentiation algorithm in unit test cases

Pick 𝛿 from unit ball, check the above invariance.

6

𝛿𝑇∇𝜃𝑓 𝜃  =
𝑓 𝜃 + 𝜖𝛿 − 𝑓(𝜃 − 𝜖𝛿) 

2𝜖
+ 𝑜 𝜖2  
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Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

Naively do so can result in wasted computations

Example:   
     

                                                   

Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients

7

𝜕(𝑓 𝜃 +𝑔 𝜃 )

𝜕𝜃
=

𝜕𝑓 𝜃

𝜕𝜃
+

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃 )

𝜕𝜃
= g(𝜃)

𝜕𝑓 𝜃

𝜕𝜃
+ f(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

𝜕𝑓(𝑔 𝜃 )

𝜕𝜃
=

𝜕𝑓(𝑔 𝜃 )

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

𝑓 𝜃 = ෑ

𝑖=1

𝑛

𝜃𝑖

𝑓 𝜃

𝜕𝜃𝑘
= ෑ

𝑗≠𝑘

𝑛

𝜃𝑗
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Recap: Computational Graph
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y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693 
𝑣4 = 𝑣1 ×  𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

Each node represent an (intermediate) value in the 

computation. Edges present input output relations.

Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018
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Forward Mode Automatic Differentiation (AD)
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Define ሶ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693 
𝑣4 = 𝑣1 ×  𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

ሶ𝑣1 = 1
ሶ𝑣2 = 0
ሶ𝑣3 = ሶ𝑣1/𝑣1 = 0.5
ሶ𝑣4 = ሶ𝑣1𝑣2 + ሶ𝑣2𝑣1 = 1 × 5 + 0 × 2 = 5
ሶ𝑣5 = ሶ𝑣2cos 𝑣2 = 0 × cos 5 = 0 
ሶ𝑣6 = ሶ𝑣3 + ሶ𝑣4 = 0.5 + 5 = 5.5
ሶ𝑣7 = ሶ𝑣6 − ሶ𝑣5 = 5.5 − 0 = 5.5

Forward AD trace

𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5 

We can then compute the ሶ𝑣𝑖 iteratively in the forward

topological order of the computational graph

Now we have
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Limitations of Forward Mode AD

• For 𝑓: ℝ𝑛 → ℝ𝑘, we need 𝑛 forward AD passes to get the 
gradient with respect to each input.

• We mostly care about the cases where 𝑘 = 1 and large 𝑛 .

• In order to resolve the problem efficiently, we need to use 
another kind of AD.

10
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Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation
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Reverse Mode Automatic Differentiation(AD)
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Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693 
𝑣4 = 𝑣1 ×  𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

We can then compute the ഥ𝑣𝑖  iteratively in the reverse

topological order of the computational graph

Reverse AD evaluation trace

𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

𝑣6 = 𝑣7

𝜕𝑣7

𝜕𝑣6
= 𝑣7 × 1 = 1

𝑣5 = 𝑣7

𝜕𝑣7

𝜕𝑣5
= 𝑣7 × −1 = −1

𝑣4 = 𝑣6

𝜕𝑣6

𝜕𝑣4
= 𝑣6 × 1 = 1

𝑣3 = 𝑣6

𝜕𝑣6

𝜕𝑣3
= 𝑣6 × 1 = 1

𝑣2 = 𝑣5

𝜕𝑣5

𝜕𝑣2
+ 𝑣4

𝜕𝑣4

𝜕𝑣2
= 𝑣5 × cos 𝑣2 + 𝑣4 × 𝑣1 = −0.284 + 2 = 1.716

𝑣1 = 𝑣4

𝜕𝑣4

𝜕𝑣1
+ 𝑣3

𝜕𝑣3

𝜕𝑣1
= 𝑣4 × 𝑣2 + 𝑣3

1

𝑣1
= 5 +

1

2
= 5.5
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Derivation for the Multiple Pathway Case
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y𝑣1 𝑣2

𝑣3

𝑣4

𝑣1 is being used in multiple pathways (𝑣2 and 𝑣3)  

𝑣1 = 
𝜕𝑦

𝜕𝑣1
 =

𝜕𝑓(𝑣2,𝑣3)

𝜕𝑣2

𝜕𝑣2

𝜕𝑣1
+

𝜕𝑓(𝑣2,𝑣3)

𝜕𝑣3

𝜕𝑣3

𝜕𝑣1
= 𝑣2

𝜕𝑣2

𝜕𝑣1
 + 𝑣3

𝜕𝑣3

𝜕𝑣1
 

y can be written in the form of y = f(v2, v3) 

Define partial adjoint 𝑣𝑖→𝑗 =  ഥ𝑣𝑗

𝜕𝑣𝑗

𝜕𝑣𝑖
for each input output node pair 𝑖 and 𝑗 

ഥ𝑣𝑖 =  ෍

𝑗∈𝑛𝑒𝑥𝑡(𝑖)

𝑣𝑖→𝑗

We can compute partial adjoints separately then sum them together
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Reverse AD Algorithm

14

def gradient(out):

      node_to_grad = {out:  [1]}

   for 𝑖 in reverse_topo_order(out):

   𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

       for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

     compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

           append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Dictionary that records a list of 

partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints
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Reverse Mode AD by Extending Computational Graph

15

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Our previous examples compute adjoint values directly by hand. 

How can we construct a computational graph that calculates the adjoint values?

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡
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Reverse mode AD by extending computational graph
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𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

×

+

1

1

𝑖 = 4
node_to_grad: {

  4: [𝑣4]

}

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡
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𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣2→4 𝑣3

× ×
×

+

1

1

𝑖 = 4
node_to_grad: {

  2: [𝑣2→4]

    3: [𝑣3]

    4: [𝑣4]

}

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Reverse Mode AD by Extending Computational Graph
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𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣2→4 𝑣3

𝑣2→3

id

× ×
×

+

1

1

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 3
node_to_grad: {

  2: [𝑣2→4, 𝑣2→3]

    3: [𝑣3]

    4: [𝑣4]

}

Reverse Mode AD by Extending Computational Graph
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𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

× ×
×

+

+
1

1

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2 
node_to_grad: {

  2: [𝑣2→4, 𝑣2→3]

    3: [𝑣3]

    4: [𝑣4]

}

Reverse Mode AD by Extending Computational Graph
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𝑖 = 2 
node_to_grad: {

  1: [𝑣1]

  2: [𝑣2→4, 𝑣2→3]

    3: [𝑣3]

    4: [𝑣4]

} 20

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function 

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

𝑣1

× ×
×

×

+

+
1

1

def gradient(out):

    node_to_grad = {out:  [1]}

  for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

    for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

        compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

        append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Reverse Mode AD by Extending Computational Graph
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𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Backprop
Reverse mode AD by 

extending computational graph

• Run backward operations the same forward graph

• Used in first generation deep learning 

frameworks (caffe, cuda-convnet)

• Construct separate graph nodes for adjoints

• Used by modern deep learning frameworks

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

𝑣1

× ×
×

×

+

+
1

1

Reverse Mode AD vs Backprop
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y𝑋 𝑣

𝑊

Define adjoint for tensor values ҧ𝑍 =

𝜕𝑦

𝜕𝑍1,1
…

𝜕𝑦

𝜕𝑍1,𝑛
… … …
𝜕𝑦

𝜕𝑍𝑚,1
…

𝜕𝑦

𝜕𝑍𝑚,𝑛

Scalar outputmatrix

𝑍

matmul

Forward evaluation trace Reverse evaluation in scalar form

𝑋𝑖,𝑘 = ෍

𝑗

𝜕𝑍𝑖,𝑗

𝜕𝑋𝑖,𝑘

ҧ𝑍𝑖,𝑗 = ෍

𝑗

𝑊𝑘,𝑗
ҧ𝑍𝑖,𝑗

𝑓

𝑍𝑖𝑗 = ෍

𝑘

𝑋𝑖𝑘𝑊𝑘𝑗

𝑣 = 𝑓(𝑍)

Forward matrix form

𝑍 = 𝑋𝑊
𝑣 = 𝑓(𝑍)

ത𝑋 = ҧ𝑍𝑊𝑇

Reverse matrix form

Reverse mode AD on Tensors
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Reverse AD Algorithm

23

def gradient(out):

      node_to_grad = {out:  [1]}

   for 𝑖 in reverse_topo_order(out):

   𝑣𝑖 =  σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

       for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

         compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

           append 𝑣𝑘→𝑖 to node_to_grad[𝑘] 

    return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Dictionary that records a list of 

partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints
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Discussions

What are the pros/cons of backprop and reverse mode AD

24
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Handling Gradient of Gradient

• The result of reverse mode AD is still a computational graph

• We can extend that graph further by composing more operations and run 
reverse mode AD again on the gradient

• Part of homework 1

25
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y𝑑 𝑣
Define adjoint data structure 

ҧ𝑑 ={“cat”:
𝜕𝑦

𝜕𝑎0
, “dog”:

𝜕𝑦

𝜕1
}

𝑏

lookup(“cat”)

Reverse evaluation

𝑓

𝑑 = {“cat”: 𝑎0, “dog”: 𝑎1}
𝑏 = 𝑑 [“cat”]
𝑣 = 𝑓(𝑏)

Forward evaluation trace

ത𝑏 =
𝜕𝑣

𝜕𝑏
 ҧ𝑣  

ҧ𝑑 = {“cat”: ത𝑏 }

• Key take away: Define “adjoint value” usually in the same data type as the forward value and 
adjoint propagation rule. Then the sample algorithm works.

• Do not need to support the general form in our framework, but we may support “tuple values”

Reverse Mode AD on Data Structures
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