
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

15-442/15-642: Machine Learning Systems

Automatic Differentiation

Spring 2026

Tianqi Chen and Zhihao Jia

Carnegie Mellon University

1
1/26/2026

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Elements of Machine Learning

• Model(hypothesis) class
A parameterized function that describes
how do we map inputs to predictions

• Loss function
How “well” are we doing for a given
set of parameters

• Training (optimization) method

A procedure to find a set of
parameters that minimizes the loss

4

Logistic regression model

Regularized loss function

Stochastic gradient descentComputing the loss function gradient with respect

to hypothesis class parameters is the most

common operation in machine learning

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Numerical Differentiation

Directly compute the partial gradient by definition

A more numerically accurate way to approximate the gradient

Suffer from numerical error, less efficient to compute

5

𝜕𝑓 𝜃

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃)

𝜖

𝜕𝑓 𝜃

𝜕𝜃𝑖
=

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃 − 𝜖𝑒𝑖)

2𝜖
+ 𝑜(𝜖2)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to check an implement
of an automatic differentiation algorithm in unit test cases

Pick 𝛿 from unit ball, check the above invariance.

6

𝛿𝑇∇𝜃𝑓 𝜃 =
𝑓 𝜃 + 𝜖𝛿 − 𝑓(𝜃 − 𝜖𝛿)

2𝜖
+ 𝑜 𝜖2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Symbolic Differentiation

Write down the formulas, derive the gradient by sum, product and chain rules

Naively do so can result in wasted computations

Example:

Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients

7

𝜕(𝑓 𝜃 +𝑔 𝜃)

𝜕𝜃
=

𝜕𝑓 𝜃

𝜕𝜃
+

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃)

𝜕𝜃
= g(𝜃)

𝜕𝑓 𝜃

𝜕𝜃
+ f(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

𝜕𝑓(𝑔 𝜃)

𝜕𝜃
=

𝜕𝑓(𝑔 𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

𝑓 𝜃 = ෑ

𝑖=1

𝑛

𝜃𝑖

𝑓 𝜃

𝜕𝜃𝑘
= ෑ

𝑗≠𝑘

𝑛

𝜃𝑗

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Computational Graph

8

y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

Each node represent an (intermediate) value in the

computation. Edges present input output relations.

Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Forward Mode Automatic Differentiation (AD)

9

Define ሶ𝑣𝑖 =
𝜕𝑣𝑖

𝜕𝑥1

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

ሶ𝑣1 = 1
ሶ𝑣2 = 0
ሶ𝑣3 = ሶ𝑣1/𝑣1 = 0.5
ሶ𝑣4 = ሶ𝑣1𝑣2 + ሶ𝑣2𝑣1 = 1 × 5 + 0 × 2 = 5
ሶ𝑣5 = ሶ𝑣2cos 𝑣2 = 0 × cos 5 = 0
ሶ𝑣6 = ሶ𝑣3 + ሶ𝑣4 = 0.5 + 5 = 5.5
ሶ𝑣7 = ሶ𝑣6 − ሶ𝑣5 = 5.5 − 0 = 5.5

Forward AD trace

𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5

We can then compute the ሶ𝑣𝑖 iteratively in the forward

topological order of the computational graph

Now we have

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Limitations of Forward Mode AD

• For 𝑓: ℝ𝑛 → ℝ𝑘, we need 𝑛 forward AD passes to get the
gradient with respect to each input.

• We mostly care about the cases where 𝑘 = 1 and large 𝑛 .

• In order to resolve the problem efficiently, we need to use
another kind of AD.

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

General introduction to different differentiation methods

Reverse mode automatic differentiation

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse Mode Automatic Differentiation(AD)

12

Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

Forward evaluation trace

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = ln 2 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = sin 5 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 10.693 + 0.959 = 11.652
𝑦 = 𝑣7 = 11.652

y = f 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑥1

𝑥2

×

ln +

−

sin

y

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6

𝑣5

𝑣7

We can then compute the ഥ𝑣𝑖 iteratively in the reverse

topological order of the computational graph

Reverse AD evaluation trace

𝑣7 =
𝜕𝑦

𝜕𝑣7
= 1

𝑣6 = 𝑣7

𝜕𝑣7

𝜕𝑣6
= 𝑣7 × 1 = 1

𝑣5 = 𝑣7

𝜕𝑣7

𝜕𝑣5
= 𝑣7 × −1 = −1

𝑣4 = 𝑣6

𝜕𝑣6

𝜕𝑣4
= 𝑣6 × 1 = 1

𝑣3 = 𝑣6

𝜕𝑣6

𝜕𝑣3
= 𝑣6 × 1 = 1

𝑣2 = 𝑣5

𝜕𝑣5

𝜕𝑣2
+ 𝑣4

𝜕𝑣4

𝜕𝑣2
= 𝑣5 × cos 𝑣2 + 𝑣4 × 𝑣1 = −0.284 + 2 = 1.716

𝑣1 = 𝑣4

𝜕𝑣4

𝜕𝑣1
+ 𝑣3

𝜕𝑣3

𝜕𝑣1
= 𝑣4 × 𝑣2 + 𝑣3

1

𝑣1
= 5 +

1

2
= 5.5

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Derivation for the Multiple Pathway Case

13

y𝑣1 𝑣2

𝑣3

𝑣4

𝑣1 is being used in multiple pathways (𝑣2 and 𝑣3)

𝑣1 =
𝜕𝑦

𝜕𝑣1
 =

𝜕𝑓(𝑣2,𝑣3)

𝜕𝑣2

𝜕𝑣2

𝜕𝑣1
+

𝜕𝑓(𝑣2,𝑣3)

𝜕𝑣3

𝜕𝑣3

𝜕𝑣1
= 𝑣2

𝜕𝑣2

𝜕𝑣1
 + 𝑣3

𝜕𝑣3

𝜕𝑣1

y can be written in the form of y = f(v2, v3)

Define partial adjoint 𝑣𝑖→𝑗 = ഥ𝑣𝑗

𝜕𝑣𝑗

𝜕𝑣𝑖
for each input output node pair 𝑖 and 𝑗

ഥ𝑣𝑖 = ෍

𝑗∈𝑛𝑒𝑥𝑡(𝑖)

𝑣𝑖→𝑗

We can compute partial adjoints separately then sum them together

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse AD Algorithm

14

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Dictionary that records a list of

partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse Mode AD by Extending Computational Graph

15

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Our previous examples compute adjoint values directly by hand.

How can we construct a computational graph that calculates the adjoint values?

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse mode AD by extending computational graph

16

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

×

+

1

1

𝑖 = 4
node_to_grad: {

 4: [𝑣4]

}

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

17

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣2→4 𝑣3

× ×
×

+

1

1

𝑖 = 4
node_to_grad: {

 2: [𝑣2→4]

 3: [𝑣3]

 4: [𝑣4]

}

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

18

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣2→4 𝑣3

𝑣2→3

id

× ×
×

+

1

1

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 3
node_to_grad: {

 2: [𝑣2→4, 𝑣2→3]

 3: [𝑣3]

 4: [𝑣4]

}

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

19

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

× ×
×

+

+
1

1

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2
node_to_grad: {

 2: [𝑣2→4, 𝑣2→3]

 3: [𝑣3]

 4: [𝑣4]

}

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

𝑖 = 2
node_to_grad: {

 1: [𝑣1]

 2: [𝑣2→4, 𝑣2→3]

 3: [𝑣3]

 4: [𝑣4]

} 20

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

NOTE: id is identity function

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

𝑣1

× ×
×

×

+

+
1

1

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 ഥ𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Reverse Mode AD by Extending Computational Graph

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

21

𝑣1

𝑣2

𝑣3

𝑣4

exp

×

+

1

Backprop
Reverse mode AD by

extending computational graph

• Run backward operations the same forward graph

• Used in first generation deep learning

frameworks (caffe, cuda-convnet)

• Construct separate graph nodes for adjoints

• Used by modern deep learning frameworks

𝑣1

𝑣2

𝑣3

𝑣4 𝑣4

exp

id

𝑣2→4 𝑣3

𝑣2→3

id
𝑣2

𝑣1

× ×
×

×

+

+
1

1

Reverse Mode AD vs Backprop

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

22

y𝑋 𝑣

𝑊

Define adjoint for tensor values ҧ𝑍 =

𝜕𝑦

𝜕𝑍1,1
…

𝜕𝑦

𝜕𝑍1,𝑛
… … …
𝜕𝑦

𝜕𝑍𝑚,1
…

𝜕𝑦

𝜕𝑍𝑚,𝑛

Scalar outputmatrix

𝑍

matmul

Forward evaluation trace Reverse evaluation in scalar form

𝑋𝑖,𝑘 = ෍

𝑗

𝜕𝑍𝑖,𝑗

𝜕𝑋𝑖,𝑘

ҧ𝑍𝑖,𝑗 = ෍

𝑗

𝑊𝑘,𝑗
ҧ𝑍𝑖,𝑗

𝑓

𝑍𝑖𝑗 = ෍

𝑘

𝑋𝑖𝑘𝑊𝑘𝑗

𝑣 = 𝑓(𝑍)

Forward matrix form

𝑍 = 𝑋𝑊
𝑣 = 𝑓(𝑍)

ത𝑋 = ҧ𝑍𝑊𝑇

Reverse matrix form

Reverse mode AD on Tensors

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Reverse AD Algorithm

23

def gradient(out):

 node_to_grad = {out: [1]}

 for 𝑖 in reverse_topo_order(out):

 𝑣𝑖 = σ𝑗 𝑣𝑖→𝑗 = sum(node_to_grad[𝑖])

 for 𝑘 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑖 :

 compute 𝑣𝑘→𝑖 = ഥ𝑣𝑖
𝜕𝑣𝑖

𝜕𝑣𝑘

 append 𝑣𝑘→𝑖 to node_to_grad[𝑘]

 return adjoint of input 𝑣𝑖𝑛𝑝𝑢𝑡

Dictionary that records a list of

partial adjoints of each node

“Propagates” partial adjoint to its input

Sum up partial adjoints

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussions

What are the pros/cons of backprop and reverse mode AD

24

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Handling Gradient of Gradient

• The result of reverse mode AD is still a computational graph

• We can extend that graph further by composing more operations and run
reverse mode AD again on the gradient

• Part of homework 1

25

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

26

y𝑑 𝑣
Define adjoint data structure

ҧ𝑑 ={“cat”:
𝜕𝑦

𝜕𝑎0
, “dog”:

𝜕𝑦

𝜕1
}

𝑏

lookup(“cat”)

Reverse evaluation

𝑓

𝑑 = {“cat”: 𝑎0, “dog”: 𝑎1}
𝑏 = 𝑑 [“cat”]
𝑣 = 𝑓(𝑏)

Forward evaluation trace

ത𝑏 =
𝜕𝑣

𝜕𝑏
 ҧ𝑣

ҧ𝑑 = {“cat”: ത𝑏 }

• Key take away: Define “adjoint value” usually in the same data type as the forward value and
adjoint propagation rule. Then the sample algorithm works.

• Do not need to support the general form in our framework, but we may support “tuple values”

Reverse Mode AD on Data Structures

	Slide 1: 15-442/15-642: Machine Learning Systems Automatic Differentiation
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Recap: Elements of Machine Learning
	Slide 5: Numerical Differentiation
	Slide 6: Numerical Gradient Checking
	Slide 7: Symbolic Differentiation
	Slide 8: Recap: Computational Graph
	Slide 9: Forward Mode Automatic Differentiation (AD)
	Slide 10: Limitations of Forward Mode AD
	Slide 11: Outline
	Slide 12: Reverse Mode Automatic Differentiation(AD)
	Slide 13: Derivation for the Multiple Pathway Case
	Slide 14: Reverse AD Algorithm
	Slide 15: Reverse Mode AD by Extending Computational Graph
	Slide 16: Reverse mode AD by extending computational graph
	Slide 17: Reverse Mode AD by Extending Computational Graph
	Slide 18: Reverse Mode AD by Extending Computational Graph
	Slide 19: Reverse Mode AD by Extending Computational Graph
	Slide 20: Reverse Mode AD by Extending Computational Graph
	Slide 21: Reverse Mode AD vs Backprop
	Slide 22
	Slide 23: Reverse AD Algorithm
	Slide 24: Discussions
	Slide 25: Handling Gradient of Gradient
	Slide 26: Reverse Mode AD on Data Structures

